13 research outputs found

    Gut Microbiome Characteristics in feral and domesticated horses from different geographic locations

    Get PDF
    Domesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated, and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences. A higher abundance of Eukaryota (p p p p </p

    Study on the Influence of AC Stray Current on X80 Steel under Stripped Coating by Electrochemical Method

    No full text
    The effect of AC stray current density on corrosion behavior of X80 steel with stripped coating defects was studied by electrochemical method. The experimental results showed that the open circuit potential of X80 steel was shifted negatively due to the existence of AC interference. The degree of negative shift increased with the increasing of AC stray current density. And the potential after the cut of AC interference was still more negative than before. That is, the corrosion interference continued after cutting the AC power. In the initial stage of the experiment, the corrosion current density with 30A/m2 AC stray current interference was about 1.4 times of that without AC interference, while the corrosion current density with 50A/m2 AC stray current interference was about two times of that without AC interference

    Study on the Electrochemical Performance of Sacrificial Anode Interfered by DC Stray Current

    No full text
    The influence of sacrificial anode electrochemical properties interfered by direct stray current (DC) of 0 V, 1 V, 3 V, and 5 V, with different chloride ion concentration and temperature, was studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and polarization curves. The specific performance was as follows: as the DC interference voltage increased from 0 V to 5 V, the degree of positive migration of the sacrificial anode open circuit potential increased. The effect of temperature in DC interference voltage environment on sacrificial anode corrosion was not great, but the low temperature of 10°C could slow down the sacrificial anode corrosion and maintain good work efficiency. With the increase of the ambient temperature, the degree of corrosion of the sacrificial anode was deepened. As the chloride ion concentration in DC interference voltage environment increased from 0% to 0.3%, the degree of positive migration of the sacrificial anode open circuit potential increased. The higher the chloride ion concentration was, the greater the impact on the performance of the sacrificial anode was

    Experimental Study on the Influence of Sulfate Reducing Bacteria on the Metallic Corrosion Behavior under Disbonded Coating

    No full text
    A rectangle disbonded coating simulation device was used to research the effect of sulfate reducing bacteria (SRB) on the metallic corrosion behavior under disbonded coating by the electrochemical method. The results showed that the metal self-corrosion potential at the same test point had little change in the initial experiment stage, whether the solution was without or with SRB. The potential amplitude in the solution with SRB was larger than that without SRB in the later corrosion period. The corrosion current density of the metal at the same test point increased gradually over time in the solution with or without SRB, and SRB could accelerate the corrosion of the metal in the disbonded crevice. The metal self-corrosion potential in the crevice had little change in the SRB solution environment after adding the fungicide, but the corrosion current density decreased significantly. That meant the growth and reproduction of SRB were inhibited after adding the fungicide, so the metal corrosion rate slowed down. Among the three kinds of solution environment, increasing the coating disbonded thickness could accelerate the corrosion of the metal in the crevice, and it was the largest in the solution with SRB

    First-principles design of high strength refractory high-entropy alloys

    No full text
    Valence electron concentration (VEC) is widely accepted as an effective guideline for designing the mechanical properties of Ti-containing refractory high-entropy alloys (RHEAs). In the present work, a series of Ti–Zr–Nb–Ta and Ti–Zr–Nb–Mo RHEAs with body-centered-cubic (bcc) structure are carefully designed by tailoring their VEC through changing the alloying composition. The elastic properties and mechanical properties are systematically calculated by using a first-principles method. Comparison with available experimental data demonstrates that the employed approach accurately describes the VEC dependence of the elastic and mechanical properties of RHEAs. In general, the elastic stability, elastic properties, ideal shear strength, Vickers hardness, and yield strength increase, whereas Zener anisotropy decreases with increasing VEC. Among all the considered RHEAs, the most isotropic RHEA Ti30Zr30Nb20Mo20 has the best strength-ductility trade-off. Mo has a stronger solid solution strengthening effect than Ta. The higher strength associates with larger lattice distortion induced by increasing VEC. Both elastic stability and mechanical properties are related to the electronic density of states of the alloys. The present work sheds deep insight into the design of high-performance RHEAs through tailoring the VEC

    Aircraft turnaround time dynamic prediction based on Time Transition Petri Net.

    No full text
    Accurate aircraft turnaround time prediction is an important way to coordinate the operation time of airport ground service and improve the efficiency of airport operation. In this paper, by analyzing the aircraft turnaround operation process, a description model based on Time Transition Petri Net is proposed. The model describes the flight turnaround operation process and the logical relationship of the operation. According to the model, a dynamic prediction method of turnaround time based on Bayesian theorem is designed. According to the actual landing time of the flight, the aircraft turnaround time is predicted. The specific method is to obtain the prior probability distribution and joint distribution law of each operation link according to the flight history data, and use Shapiro-Wilke to test the prior probability distribution of each link. Based on the analysis and comparison between the actual turnaround data of a large airport in China and the forecast data proposed in this paper, the root-mean-square error 3.75 minutes and the mean absolute error 3.40 minutes can be calculated. This paper contributes to the improvement of flight punctuality rate and airport clearance level

    Identification and validation of hub genes involved in foam cell formation and atherosclerosis development via bioinformatics

    No full text
    Background Foam cells play crucial roles in all phases of atherosclerosis. However, until now, the specific mechanisms by which these foam cells contribute to atherosclerosis remain unclear. We aimed to identify novel foam cell biomarkers and interventional targets for atherosclerosis, characterizing their potential mechanisms in the progression of atherosclerosis. Methods Microarray data of atherosclerosis and foam cells were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expression genes (DEGs) were screened using the “LIMMA” package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) annotation were both carried out. Hub genes were found in Cytoscape after a protein-protein interaction (PPI) enrichment analysis was carried out. Validation of important genes in the GSE41571 dataset, cellular assays, and tissue samples. Results A total of 407 DEGs in atherosclerosis and 219 DEGs in foam cells were identified, and the DEGs in atherosclerosis were mainly involved in cell proliferation and differentiation. CSF1R and PLAUR were identified as common hub genes and validated in GSE41571. In addition, we also found that the expression of CSF1R and PLAUR gradually increased with the accumulation of lipids and disease progression in cell and tissue experiments. Conclusion CSF1R and PLAUR are key hub genes of foam cells and may play an important role in the biological process of atherosclerosis. These results advance our understanding of the mechanism behind atherosclerosis and potential therapeutic targets for future development
    corecore