32 research outputs found

    Waveform-Domain Adaptive Matched Filtering: A Novel Approach to Suppressing Interrupted-Sampling Repeater Jamming

    Full text link
    The inadequate adaptability to flexible interference scenarios remains an unresolved challenge in the majority of techniques utilized for mitigating interrupted-sampling repeater jamming (ISRJ). Matched filtering system based methods is desirable to incorporate anti-ISRJ measures based on prior ISRJ modeling, either preceding or succeeding the matched filtering. Due to the partial matching nature of ISRJ, its characteristics are revealed during the process of matched filtering. Therefore, this paper introduces an extended domain called the waveform domain within the matched filtering process. On this domain, a novel matched filtering model, known as the waveform-domain adaptive matched filtering (WD-AMF), is established to tackle the problem of ISRJ suppression without relying on a pre-existing ISRJ model. The output of the WD-AMF encompasses an adaptive filtering term and a compensation term. The adaptive filtering term encompasses the adaptive integration outcomes in the waveform domain, which are determined by an adaptive weighted function. This function, akin to a collection of bandpass filters, decomposes the integrated function into multiple components, some of which contain interference while others do not. The compensation term adheres to an integrated guideline for discerning the presence of signal components or noise within the integrated function. The integration results are then concatenated to reconstruct a compensated matched filter signal output. Simulations are conducted to showcase the exceptional capability of the proposed method in suppressing ISRJ in diverse interference scenarios, even in the absence of a pre-existing ISRJ model

    Oroxylin A promotes PTEN-mediated negative regulation of MDM2 transcription via SIRT3-mediated deacetylation to stabilize p53 and inhibit glycolysis in wt-p53 cancer cells

    Get PDF
    Introduction p53 plays important roles in regulating the metabolic reprogramming of cancer, such as aerobic glycolysis. Oroxylin A is a natural active flavonoid with strong anticancer effects both in vitro and in vivo. Methods wt-p53 (MCF-7 and HCT116 cells) cancer cells and p53-null H1299 cancer cells were used. The glucose uptake and lactate production were analyzed using Lactic Acid production Detection kit and the Amplex Red Glucose Assay Kit. Then, the protein levels and RNA levels of p53, mouse double minute 2 (MDM2), and p53-targeted glycolytic enzymes were quantified using Western blotting and quantitative polymerase chain reaction (PCR), respectively. Immunoprecipitation were performed to assess the binding between p53, MDM2, and sirtuin-3 (SIRT3), and the deacetylation of phosphatase and tensin homolog (PTEN). Reporter assays were performed to assess the transcriptional activity of PTEN. In vivo, effects of oroxylin A was investigated in nude mice xenograft tumor-inoculated MCF-7 or HCT116 cells. Results Here, we analyzed the underlying mechanisms that oroxylin A regulated p53 level and glycolytic metabolism in wt-p53 cancer cells, and found that oroxylin A inhibited glycolysis through upregulating p53 level. Oroxylin A did not directly affect the transcription of wt-p53, but suppressed the MDM2-mediated degradation of p53 via downregulating MDM2 transcription in wt-p53 cancer cells. In further studies, we found that oroxylin A induced a reduction in MDM2 transcription by promoting the lipid phosphatase activity of phosphatase and tensin homolog, which was upregulated via sirtuin3-mediated deacetylation. In vivo, oroxylin A inhibited the tumor growth of nude mice-inoculated MCF-7 or HCT116 cells. The expression of MDM2 protein in tumor tissue was downregulated by oroxylin A as well. Conclusions These results provide a p53-independent mechanism of MDM2 transcription and reveal the potential of oroxylin A on glycolytic regulation in both wt-p53 and mut-p53 cancer cells. The studies have important implications for the investigation on anticancer effects of oroxylin A, and provide the academic basis for the clinical trial of oroxylin A in cancer patients

    Weak Target Detection Method of Passive Bistatic Radar Based on Probability Histogram

    No full text
    Passive bistatic radar (PBR) has attracted widespread attention for its capabilities in dealing with the threat of electronic countermeasure, stealth technology, and antiradiation missile. However, passive detection methods are limited by unknown characteristics of the uncooperative illuminators, and conventional radar signal processing algorithms cannot be conducted accurately, especially when the carrier frequency of the transmitting signal is agile and the signal-to-noise ratio (SNR) in the scattered wave of target is low. To address the above problems, this paper presents a novel weak target detection method based on probability histogram, which is then tested by a field experiment. Preliminary results indicate the feasibility of the proposed method in weak target detection

    Refined PHD Filter for Multi-Target Tracking under Low Detection Probability

    No full text
    Radar target detection probability will decrease as the target echo signal-to-noise ratio (SNR) decreases, which has an adverse influence on the result of multi-target tracking. The performances of standard multi-target tracking algorithms degrade significantly under low detection probability in practice, especially when continuous miss detection occurs. Based on sequential Monte Carlo implementation of Probability Hypothesis Density (PHD) filter, this paper proposes a heuristic method called the Refined PHD (R-PHD) filter to improve multi-target tracking performance under low detection probability. In detail, this paper defines a survival probability which is dependent on target state, and labels individual extracted targets and corresponding particles. When miss detection occurs due to low detection probability, posterior particle weights will be revised according to the prediction step. Finally, we transform the target confirmation problem into a hypothesis test problem, and utilize sequential probability ratio test to distinguish real targets and false alarms in real time. Computer simulations with respect to different detection probabilities, average numbers of false alarms and continuous miss detection durations are provided to corroborate the superiority of the proposed method, compared with standard PHD filter, Cardinalized PHD (CPHD) filter and Cardinality Balanced Multi-target Multi-Bernoulli (CBMeMBer) filter

    Coherent Integration Method Based on Radon-NUFFT for Moving Target Detection Using Frequency Agile Radar

    No full text
    This paper considers the coherent integration problem for moving target detection using frequency agile (FA) radar, involving range cell migration (RCM) and the nonuniform phase fluctuations among different pulses caused by range-agile frequency (R-AF) coupling and velocity-time-agile frequency (V-T-AF) coupling. After the analysis of the term corresponding to the phase fluctuation caused by V-T-AF coupling, the term can be regarded as related to an equivalent non-uniform slow time, and nonuniform fast Fourier transform (NUFFT) could be the solution. So a fast coherent integration method combining Radon Fourier transform (RFT) and NUFFT based on low-rank approximation, i.e., Radon-NUFFT, is proposed. In this method, the RCM is solved by Radon algorithm via target trajectory searching, the non-uniform phase fluctuation caused by R-AF coupling is compensated by constructing a compensation item corresponding to the range and agile frequency. In addition, the compensation of the non-uniform phase fluctuation caused by V-T-AF coupling is converted into a problem of spectral analysis of non-uniform sampling complex-valued signal, which is solved by the NUFFT based on low rank approximation. Compared with the existing methods, the proposed method can realize the coherent integration for FA radar accurately and quickly. The effectiveness of the proposed method is verified by simulation experiments

    Bistatic weak target detection method using non-cooperative air surveillance radar

    No full text
    corecore