60 research outputs found

    Pn wave velocity and anisotropy underneath the central segment of the North-South Seismic Belt in China

    Get PDF
    We present a Pn wave velocity and anisotropy model of the central segment of the North-South Seismic Belt in China, where there are numerous stable basins and active faults, making this segment attractive for extensive studies. The model was obtained by a tomographic analysis of 49,973 Pn wave phase readings collected by the China Earthquake Networks Center and temporary stations in Yunnan and Sichuan. The tomographic velocity model shows that the average Pn wave velocity is 8.06km/s; prominent high-velocity (high-V) anomalies are visible under the Sichuan Basin, the Zoige Basin and the Ordos block, which clearly outline their tectonic mar- gins. A pronounced low-velocity (low-V) zone is observed from the Songpan-Ganzi block to the Chuan-Dian and Daliangshan blocks, suggesting the presence of hot material upwelling. The station delay data show a gradual variation from negative to positive values, possibly reflecting a crustal thickness variation from the southwest to the northeast of the study area. A correlation between the Pn wave anisotropy and the distribution of velocity anomalies is observed: anisotropy is relatively weaker in the high-V anomaly zones beneath stable basins, while it is stronger in the low-V anomaly zones and the high-to-low-V anomaly transition zones. The high-resolution velocity and anisotropy tomographic model that we obtained could also provide a better understanding of the study area seismicity, since the occurrence of strong earthquakes seems to be related to the presence and strength of lateral heterogeneities at the uppermost mantle level

    Algebraic Attacks on Round-Reduced RAIN and Full AIM-III

    Get PDF
    Picnic is a NIST PQC Round 3 Alternate signature candidate that builds upon symmetric primitives following the MPC-in-the-head paradigm. Recently, researchers have been exploring more secure/efficient signature schemes from conservative one-way functions based on AES, or new low complexity one-way functions like Rain (CCS 2022) and AIM (CCS 2023). The signature schemes based on Rain and AIM are currently the most efficient among MPC-in-the-head-based schemes, making them promising post-quantum digital signature candidates. However, the exact hardness of these new one-way functions deserves further study and scrutiny. This work presents algebraic attacks on RAIN and AIM for certain instances, where one-round Rain can be compromised in 2n/22^{n/2} for security parameter n{128,192,256}n\in \{128,192,256\}, and two-round Rain can be broken in 2120.32^{120.3}, 2180.42^{180.4}, and 2243.12^{243.1} encryptions, respectively. Additionally, we demonstrate an attack on AIM-III (which aims at 192-bit security) with a complexity of 2186.52^{186.5} encryptions. These attacks exploit the algebraic structure of the power function over fields with characteristic 2, which provides potential insights into the algebraic structures of some symmetric primitives and thus might be of independent interest

    Author Correction: Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-021-27698-3, published online 10 January 2022.In Supplementary Fig. 28b in the Supplementary PDF for this article, the figure panel incorrectly read ‘345 mW/cm2’ but should have been ‘34.5 mW/cm2’.In the caption of Supplementary Fig. 20 in the Supplementary PDF for this article, the term ‘isotropic analysis’ should have read ‘isotopic analysis’.In the caption of Supplementary Fig. 21 in the Supplementary PDF for this article, the term ‘isotropic analysis’ should have read ‘isotopic analysis’.In the caption of Supplementary Fig. 28b in the Supplementary PDF for this article, the term ‘isotropic test’ should have read ‘isotopic test’

    Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have been done to find out the molecular mechanism of systemic acquired resistance (SAR) in plants in the past several decades. Numbers of researches have been carried out in the model plants such as arabidopsis, tobacco, rice and so on, however, with little work done in woody plants especially in fruit trees such as apple. Components of the pathway of SAR seem to be extremely conserved in the variety of species. <it>Malus hupehensis</it>, which is origin in China, is strong resistance with rootstock. In the study, we attempted to make the expression pattern of pathogenesis related (PR) genes which were downstream components of the SAR pathway in response to salicylic acid(SA), methyl jasmonate(MeJA) and 1-aminocyclopropane-1-carboxylic acid(ACC) in <it>Malus hupehensis</it>.</p> <p>Findings</p> <p>In order to analyze the expression pattern, the partial sequence of three PR genes from <it>Malus hupehensis</it>, <it>MhPR1</it>, <it>MhPR5 </it>and <it>MhPR8 </it>was isolated. These three PR genes were induced by SA, MeJA and ACC. However, <it>MhPR1</it>, <it>MhPR5 </it>and <it>MhPR8 </it>performed a distinct pattern of expression in different plant organs. <it>MhPR5 </it>and <it>MhPR8 </it>were basal expression in leaves, stems and roots, and <it>MhPR1 </it>was basal expression only in stems. The expression of <it>MhPR1</it>, <it>MhPR5 </it>and <it>MhPR8 </it>was enhanced during the first 48 h post-induced with SA, MeJA and ACC.</p> <p>Conclusions</p> <p>The results showed that a distinct pattern of expression of PR genes in <it>Malus hupehensis </it>which differed from the previous reports on model plants arabidopsis, tobacco and rice. <it>MhPR1</it>, <it>MhPR5 </it>and <it>MhPR8 </it>were induced by SA, MeJA and ACC, which were regarded as the marker genes in the SAR response in <it>Malus hupehensis</it>. In contrast with herbal plants, there could be specific signal pathway in response to SA, JA and ET for woody plants.</p

    Gas Sensors Based on Molecular Imprinting Technology

    No full text
    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions
    corecore