339 research outputs found

    microRNA evolution in a human transcription factor and microRNA regulatory network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNAs) are important cellular components. The understanding of their evolution is of critical importance for the understanding of their function. Although some specific evolutionary rules of miRNAs have been revealed, the rules of miRNA evolution in cellular networks remain largely unexplored. According to knowledge from protein-coding genes, the investigations of gene evolution in the context of biological networks often generate valuable observations that cannot be obtained by traditional approaches.</p> <p>Results</p> <p>Here, we conducted the first systems-level analysis of miRNA evolution in a human transcription factor (TF)-miRNA regulatory network that describes the regulatory relations among TFs, miRNAs, and target genes. We found that the architectural structure of the network provides constraints and functional innovations for miRNA evolution and that miRNAs showed different and even opposite evolutionary patterns from TFs and other protein-coding genes. For example, miRNAs preferentially coevolved with their activators but not with their inhibitors. During transcription, rapidly evolving TFs frequently activated but rarely repressed miRNAs. In addition, conserved miRNAs tended to regulate rapidly evolving targets, and upstream miRNAs evolved more rapidly than downstream miRNAs.</p> <p>Conclusions</p> <p>In this study, we performed the first systems level analysis of miRNA evolution. The findings suggest that miRNAs have a unique evolution process and thus may have unique functions and roles in various biological processes and diseases. Additionally, the network presented here is the first TF-miRNA regulatory network, which will be a valuable platform of systems biology.</p

    Towards Large-Scale Small Object Detection: Survey and Benchmarks

    Full text link
    With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: \url{https://shaunyuan22.github.io/SODA}

    SARS-CoV-2 Transmission and Epidemic Characteristics in Jining City, China

    Get PDF
    Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes severe acute respiratory syndrome has spread to hundreds of countries and infected millions of people, causing more than a hundred thousand deaths. This study aimed to describe the epidemic characteristics of SARS-CoV-2 and its transmission in a city in China.Methods: This was a descriptive study on retrospective data collected from January to February 2020 from reports issued by the authority of Jining City, China, including data on travel history, transmission, gender, and age of infected persons. Results: During the period January and February 2020, 52 cases were confirmed to be SARS-CoV-2 infections with more than half were males (n=32, 61.5%) and and in the age grup of 31ā€“50 yars old (53.8%). The modes of transmission were mostly primary infections (n=23) and a history of travel to and from outside of Shandong Province (n=14). Interestingly, the infection was the 4th transmission and most primary infectious persons did not transmit the virus to others.Conclusions: The key characters of infected people in Jining City in early epidemic time with the exception of exogenous inputs are male gender, city dweller, and middle-aged people of 31ā€“50 years old. There is a restricted transmission in Jining City of China at the early phrase of the SARS-CoV-2 epidemic, indicating that the strategy for the fight against SARS-CoV-2 is effective to some extent and worth to be learned by the members of the global village. This strategy includes actions such as home isolation, collective centralized quarantine, social distancing, and face mask use

    Disorder induced multifractal superconductivity in monolayer niobium dichalcogenides

    Full text link
    The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Anderson's theorem. Destruction of superconductivity and even superconductor-insulator transitions occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states. Because of the entanglement of various effects, the mechanism of enhancement is still under debate. Here we report well-controlled disorder effect in the recently discovered monolayer NbSe2_2 superconductor. The superconducting transition temperatures of NbSe2_2 monolayers are substantially increased by disorder. Realistic theoretical modeling shows that the unusual enhancement possibly arises from the multifractality of electron wave functions. This work provides the first experimental evidence of the multifractal superconducting state

    Bioinformatic validation and machine learning-based exploration of purine metabolism-related gene signatures in the context of immunotherapeutic strategies for nonspecific orbital inflammation

    Get PDF
    BackgroundNonspecific orbital inflammation (NSOI) represents a perplexing and persistent proliferative inflammatory disorder of idiopathic nature, characterized by a heterogeneous lymphoid infiltration within the orbital region. This condition, marked by the aberrant metabolic activities of its cellular constituents, starkly contrasts with the metabolic equilibrium found in healthy cells. Among the myriad pathways integral to cellular metabolism, purine metabolism emerges as a critical player, providing the building blocks for nucleic acid synthesis, such as DNA and RNA. Despite its significance, the contribution of Purine Metabolism Genes (PMGs) to the pathophysiological landscape of NSOI remains a mystery, highlighting a critical gap in our understanding of the diseaseā€™s molecular underpinnings.MethodsTo bridge this knowledge gap, our study embarked on an exploratory journey to identify and validate PMGs implicated in NSOI, employing a comprehensive bioinformatics strategy. By intersecting differential gene expression analyses with a curated list of 92 known PMGs, we aimed to pinpoint those with potential roles in NSOI. Advanced methodologies, including Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), facilitated a deep dive into the biological functions and pathways associated with these PMGs. Further refinement through Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) enabled the identification of key hub genes and the evaluation of their diagnostic prowess for NSOI. Additionally, the relationship between these hub PMGs and relevant clinical parameters was thoroughly investigated. To corroborate our findings, we analyzed expression data from datasets GSE58331 and GSE105149, focusing on the seven PMGs identified as potentially crucial to NSOI pathology.ResultsOur investigation unveiled seven PMGs (ENTPD1, POLR2K, NPR2, PDE6D, PDE6H, PDE4B, and ALLC) as intimately connected to NSOI. Functional analyses shed light on their involvement in processes such as peroxisome targeting sequence binding, seminiferous tubule development, and ciliary transition zone organization. Importantly, the diagnostic capabilities of these PMGs demonstrated promising efficacy in distinguishing NSOI from non-affected states.ConclusionsThrough rigorous bioinformatics analyses, this study unveils seven PMGs as novel biomarker candidates for NSOI, elucidating their potential roles in the diseaseā€™s pathogenesis. These discoveries not only enhance our understanding of NSOI at the molecular level but also pave the way for innovative approaches to monitor and study its progression, offering a beacon of hope for individuals afflicted by this enigmatic condition

    Elucidating the multifaceted roles of GPR146 in non-specific orbital inflammation: a concerted analytical approach through the prisms of bioinformatics and machine learning

    Get PDF
    BackgroundNon-specific Orbital Inflammation (NSOI) is a chronic idiopathic condition marked by extensive polymorphic lymphoid infiltration in the orbital area. The integration of metabolic and immune pathways suggests potential therapeutic roles for C-peptide and G protein-coupled receptor 146 (GPR146) in diabetes and its sequelae. However, the specific mechanisms through which GPR146 modulates immune responses remain poorly understood. Furthermore, the utility of GPR146 as a diagnostic or prognostic marker for NSOI has not been conclusively demonstrated.MethodsWe adopted a comprehensive analytical strategy, merging differentially expressed genes (DEGs) from the Gene Expression Omnibus (GEO) datasets GSE58331 and GSE105149 with immune-related genes from the ImmPort database. Our methodology combined LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) for feature selection, followed by Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) to explore gene sets co-expressed with GPR146, identifying a significant enrichment in immune-related pathways. The tumor microenvironmentā€™s immune composition was quantified using the CIBERSORT algorithm and the ESTIMATE method, which confirmed a positive correlation between GPR146 expression and immune cell infiltration. Validation of GPR146 expression was performed using the GSE58331 dataset.ResultsAnalysis identified 113 DEGs associated with GPR146, with a significant subset showing distinct expression patterns. Using LASSO and SVM-RFE, we pinpointed 15 key hub genes. Functionally, these genes and GPR146 were predominantly linked to receptor ligand activity, immune receptor activity, and cytokine-mediated signaling. Specific immune cells, such as memory B cells, M2 macrophages, resting mast cells, monocytes, activated NK cells, plasma cells, and CD8+ T cells, were positively associated with GPR146 expression. In contrast, M0 macrophages, naive B cells, M1 macrophages, activated mast cells, activated memory CD4+ T cells, naive CD4+ T cells, and gamma delta T cells showed inverse correlations. Notably, our findings underscore the potential diagnostic relevance of GPR146 in distinguishing NSOI.ConclusionOur study elucidates the immunological signatures associated with GPR146 in the context of NSOI, highlighting its prognostic and diagnostic potential. These insights pave the way for GPR146 to be a novel biomarker for monitoring the progression of NSOI, providing a foundation for future therapeutic strategies targeting immune-metabolic pathways

    Bound states at disclinations: an additive rule of real and reciprocal space topology

    Get PDF
    Focusing on the two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, we propose an additive rule between the real-space topological invariant s of disclinations (related to the Burgers vector B) and the reciprocal-space topological invariant p of bulk wave functions (the vectored Zak phase). The disclination-induced bound states in the 2D SSH model appear only if (s + p/2Ļ€) is nonzero modulo the lattice constant. These disclination-bound states are robust against perturbations respecting C4 point group symmetry and other perturbations within an amplitude determined by p. Besides the disclination-bound states, the proposed additive rule also suggests that a half-bound state extends over only half of a sample and a hybrid-bound state, which always have a nonvanishing component of s + p/2Ļ€

    Reweighted Mixup for Subpopulation Shift

    Full text link
    Subpopulation shift exists widely in many real-world applications, which refers to the training and test distributions that contain the same subpopulation groups but with different subpopulation proportions. Ignoring subpopulation shifts may lead to significant performance degradation and fairness concerns. Importance reweighting is a classical and effective way to handle the subpopulation shift. However, recent studies have recognized that most of these approaches fail to improve the performance especially when applied to over-parameterized neural networks which are capable of fitting any training samples. In this work, we propose a simple yet practical framework, called reweighted mixup (RMIX), to mitigate the overfitting issue in over-parameterized models by conducting importance weighting on the ''mixed'' samples. Benefiting from leveraging reweighting in mixup, RMIX allows the model to explore the vicinal space of minority samples more, thereby obtaining more robust model against subpopulation shift. When the subpopulation memberships are unknown, the training-trajectories-based uncertainty estimation is equipped in the proposed RMIX to flexibly characterize the subpopulation distribution. We also provide insightful theoretical analysis to verify that RMIX achieves better generalization bounds over prior works. Further, we conduct extensive empirical studies across a wide range of tasks to validate the effectiveness of the proposed method.Comment: Journal version of arXiv:2209.0892

    The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae

    Get PDF
    Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene
    • ā€¦
    corecore