456 research outputs found
Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification
Classifying incomplete multi-view data is inevitable since arbitrary view
missing widely exists in real-world applications. Although great progress has
been achieved, existing incomplete multi-view methods are still difficult to
obtain a trustworthy prediction due to the relatively high uncertainty nature
of missing views. First, the missing view is of high uncertainty, and thus it
is not reasonable to provide a single deterministic imputation. Second, the
quality of the imputed data itself is of high uncertainty. To explore and
exploit the uncertainty, we propose an Uncertainty-induced Incomplete
Multi-View Data Classification (UIMC) model to classify the incomplete
multi-view data under a stable and reliable framework. We construct a
distribution and sample multiple times to characterize the uncertainty of
missing views, and adaptively utilize them according to the sampling quality.
Accordingly, the proposed method realizes more perceivable imputation and
controllable fusion. Specifically, we model each missing data with a
distribution conditioning on the available views and thus introducing
uncertainty. Then an evidence-based fusion strategy is employed to guarantee
the trustworthy integration of the imputed views. Extensive experiments are
conducted on multiple benchmark data sets and our method establishes a
state-of-the-art performance in terms of both performance and trustworthiness.Comment: CVP
Semantic Equivariant Mixup
Mixup is a well-established data augmentation technique, which can extend the
training distribution and regularize the neural networks by creating ''mixed''
samples based on the label-equivariance assumption, i.e., a proportional mixup
of the input data results in the corresponding labels being mixed in the same
proportion. However, previous mixup variants may fail to exploit the
label-independent information in mixed samples during training, which usually
contains richer semantic information. To further release the power of mixup, we
first improve the previous label-equivariance assumption by the
semantic-equivariance assumption, which states that the proportional mixup of
the input data should lead to the corresponding representation being mixed in
the same proportion. Then a generic mixup regularization at the representation
level is proposed, which can further regularize the model with the semantic
information in mixed samples. At a high level, the proposed semantic
equivariant mixup (sem) encourages the structure of the input data to be
preserved in the representation space, i.e., the change of input will result in
the obtained representation information changing in the same way. Different
from previous mixup variants, which tend to over-focus on the label-related
information, the proposed method aims to preserve richer semantic information
in the input with semantic-equivariance assumption, thereby improving the
robustness of the model against distribution shifts. We conduct extensive
empirical studies and qualitative analyzes to demonstrate the effectiveness of
our proposed method. The code of the manuscript is in the supplement.Comment: Under revie
Efficient Traffic Flow Measurement for ISP Networks
International audienceTraffic flow measurement is of great importance to ISPs for various network engineering tasks. However, directly measuring traffic flows of the whole ISP network is greatly time and cost-consuming. An interesting problem is that how one can obtain the traffic flows of the whole ISP network by just monitoring a small fraction of links. Previous works view the problem as Vertex Cover problem. They suffer from high time complexity. Besides, using these methods, the monitoring of some links is redundant. Different from these works, we study the problem from the perspective of edges and propose two models. The first model, Extended Edge Cover model, is based on the key observation of flow conservation. This method can determine the minimum set of monitored links, which are 30% less than that of previous works. The second model, shared-path model, utilizes the routing information and topological property of the network. It is more suitable when the monitoring resources are limited but one still wants to measure a large part of the networks. Using this method, one can measure 85% of the network by monitoring 5% of links. Finally, we evaluate the performance of the two models through extensive simulations. The experimental results show the effectiveness and robustness of the two models
Rice Crop Height Inversion from TanDEM-X PolInSAR Data Using the RVoG Model Combined with the Logistic Growth Equation
The random volume over ground (RVoG) model has been widely used in the field of vegetation height retrieval based on polarimetric interferometric synthetic aperture radar (PolInSAR) data. However, to date, its application in a time-series framework has not been considered. In this study, the logistic growth equation was introduced into the PolInSAR method for the first time to assist in estimating crop height, and an improved inversion scheme for the corresponding RVoG model parameters combined with the logistic growth equation was proposed. This retrieval scheme was tested using a time series of single-pass HH-VV bistatic TanDEM-X data and reference data obtained over rice fields. The effectiveness of the time-series RVoG model based on the logistic growth equation and the convenience of using equation parameters to evaluate vegetation growth status were analyzed at three test plots. The results show that the improved method can effectively monitor the height variation of crops throughout the whole growth cycle and the rice height estimation achieved an accuracy better than when single dates were considered. This proved that the proposed method can reduce the dependence on interferometric sensitivity and can achieve the goal of monitoring the whole process of rice height evolution with only a few PolInSAR observations.This research was funded in part by the National Natural Science Foundation of China (grant nos. 41820104005, 42030112, 41904004) and in part by the and the Spanish Ministry of Science and Innovation (grant no. PID2020-117303GB-C22)
Forest Height Inversion by Combining Single-Baseline TanDEM-X InSAR Data with External DTM Data
Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation.This work was supported in part by the National Natural Science Foundation of China under Grant 41820104005, Grant 42030112, and Grant 41904004, Hunan Natural Science Foundation under Grant 2021JJ30808, and in part by the Spanish Ministry of Science and Innovation, Agencia Estatal de Investigacion, under Projects PID2020-117303GB-C22/AEI/10.13039/501100011033 and PROWARM (PID2020-118444GA-I00/AEI/10.13039/501100011033)
GBG++: A Fast and Stable Granular Ball Generation Method for Classification
Granular ball computing (GBC), as an efficient, robust, and scalable learning
method, has become a popular research topic of granular computing. GBC includes
two stages: granular ball generation (GBG) and multi-granularity learning based
on the granular ball (GB). However, the stability and efficiency of existing
GBG methods need to be further improved due to their strong dependence on
-means or -division. In addition, GB-based classifiers only unilaterally
consider the GB's geometric characteristics to construct classification rules,
but the GB's quality is ignored. Therefore, in this paper, based on the
attention mechanism, a fast and stable GBG (GBG++) method is proposed first.
Specifically, the proposed GBG++ method only needs to calculate the distances
from the data-driven center to the undivided samples when splitting each GB
instead of randomly selecting the center and calculating the distances between
it and all samples. Moreover, an outlier detection method is introduced to
identify local outliers. Consequently, the GBG++ method can significantly
improve effectiveness, robustness, and efficiency while being absolutely
stable. Second, considering the influence of the sample size within the GB on
the GB's quality, based on the GBG++ method, an improved GB-based -nearest
neighbors algorithm (GBNN++) is presented, which can reduce
misclassification at the class boundary. Finally, the experimental results
indicate that the proposed method outperforms several existing GB-based
classifiers and classical machine learning classifiers on public benchmark
datasets
Forest height inversion by combining single-baseline TanDEM-X InSAR data with external DTM data
Producción CientíficaForest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation.Fundación Nacional de Ciencias Naturales de China - (grants 41820104005, 42030112 y 41904004)Fundación de Ciencias Naturales de Hunan - (Grant 2021JJ30808)Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 - ( Projects PID2020-117303GB-C22 y PROWARM PID2020-118444GA-I00
- …