383 research outputs found

    Digital Twin-based Anomaly Detection with Curriculum Learning in Cyber-physical Systems

    Full text link
    Anomaly detection is critical to ensure the security of cyber-physical systems (CPS). However, due to the increasing complexity of attacks and CPS themselves, anomaly detection in CPS is becoming more and more challenging. In our previous work, we proposed a digital twin-based anomaly detection method, called ATTAIN, which takes advantage of both historical and real-time data of CPS. However, such data vary significantly in terms of difficulty. Therefore, similar to human learning processes, deep learning models (e.g., ATTAIN) can benefit from an easy-to-difficult curriculum. To this end, in this paper, we present a novel approach, named digitaL twin-based Anomaly deTecTion wIth Curriculum lEarning (LATTICE), which extends ATTAIN by introducing curriculum learning to optimize its learning paradigm. LATTICE attributes each sample with a difficulty score, before being fed into a training scheduler. The training scheduler samples batches of training data based on these difficulty scores such that learning from easy to difficult data can be performed. To evaluate LATTICE, we use five publicly available datasets collected from five real-world CPS testbeds. We compare LATTICE with ATTAIN and two other state-of-the-art anomaly detectors. Evaluation results show that LATTICE outperforms the three baselines and ATTAIN by 0.906%-2.367% in terms of the F1 score. LATTICE also, on average, reduces the training time of ATTAIN by 4.2% on the five datasets and is on par with the baselines in terms of detection delay time

    Global patterns, trends, and drivers of water use efficiency from 2000 to 2013

    Get PDF
    Water use efficiency (WUE; gross primary production [GPP]/evapotranspiration [ET]) estimates the tradeoff between carbon gain and water loss during photosynthesis and is an important link of the carbon and water cycles. Understanding the spatiotemporal patterns and drivers of WUE is helpful for projecting the responses of ecosystems to climate change. Here we examine the spatiotemporal patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our results show that the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year period. WUE exhibits large variability with latitude. WUE also varies much with elevation: it first remains relatively constant as the elevation varies from 0 to 1000 m and then decreases dramatically. WUE generally increases as precipitation and specific humidity increase; whereas it decreases after reaching maxima as temperature and solar radiation increases. In most land areas, the temporal trend of WUE is positively correlated with precipitation and specific humidity over the 14-year period; while it has a negative relationship with temperature and solar radiation related to global warming and dimming. On average, WUE shows an increasing trend of 0.0025 g C·kg−1 H2O·yr−1 globally. Our global-scale assessment of WUE has implications for improving our understanding of the linkages between the water and carbon cycles and for better projecting the responses of ecosystems to climate change

    QueryNet: Attack by Multi-Identity Surrogates

    Full text link
    Deep Neural Networks (DNNs) are acknowledged as vulnerable to adversarial attacks, while the existing black-box attacks require extensive queries on the victim DNN to achieve high success rates. For query-efficiency, surrogate models of the victim are used to generate transferable Adversarial Examples (AEs) because of their Gradient Similarity (GS), i.e., surrogates' attack gradients are similar to the victim's ones. However, it is generally neglected to exploit their similarity on outputs, namely the Prediction Similarity (PS), to filter out inefficient queries by surrogates without querying the victim. To jointly utilize and also optimize surrogates' GS and PS, we develop QueryNet, a unified attack framework that can significantly reduce queries. QueryNet creatively attacks by multi-identity surrogates, i.e., crafts several AEs for one sample by different surrogates, and also uses surrogates to decide on the most promising AE for the query. After that, the victim's query feedback is accumulated to optimize not only surrogates' parameters but also their architectures, enhancing both the GS and the PS. Although QueryNet has no access to pre-trained surrogates' prior, it reduces queries by averagely about an order of magnitude compared to alternatives within an acceptable time, according to our comprehensive experiments: 11 victims (including two commercial models) on MNIST/CIFAR10/ImageNet, allowing only 8-bit image queries, and no access to the victim's training data. The code is available at https://github.com/Sizhe-Chen/QueryNet.Comment: QueryNet reduces queries by about an order of magnitude against SOTA black-box attack

    Going Far Boosts Attack Transferability, but Do Not Do It

    Full text link
    Deep Neural Networks (DNNs) could be easily fooled by Adversarial Examples (AEs) with an imperceptible difference to original ones in human eyes. Also, the AEs from attacking one surrogate DNN tend to cheat other black-box DNNs as well, i.e., the attack transferability. Existing works reveal that adopting certain optimization algorithms in attack improves transferability, but the underlying reasons have not been thoroughly studied. In this paper, we investigate the impacts of optimization on attack transferability by comprehensive experiments concerning 7 optimization algorithms, 4 surrogates, and 9 black-box models. Through the thorough empirical analysis from three perspectives, we surprisingly find that the varied transferability of AEs from optimization algorithms is strongly related to the corresponding Root Mean Square Error (RMSE) from their original samples. On such a basis, one could simply approach high transferability by attacking until RMSE decreases, which motives us to propose a LArge RMSE Attack (LARA). Although LARA significantly improves transferability by 20%, it is insufficient to exploit the vulnerability of DNNs, leading to a natural urge that the strength of all attacks should be measured by both the widely used ℓ∞\ell_\infty bound and the RMSE addressed in this paper, so that tricky enhancement of transferability would be avoided

    Revisiting Deep Ensemble for Out-of-Distribution Detection: A Loss Landscape Perspective

    Full text link
    Existing Out-of-Distribution (OoD) detection methods address to detect OoD samples from In-Distribution data (InD) mainly by exploring differences in features, logits and gradients in Deep Neural Networks (DNNs). We in this work propose a new perspective upon loss landscape and mode ensemble to investigate OoD detection. In the optimization of DNNs, there exist many local optima in the parameter space, or namely modes. Interestingly, we observe that these independent modes, which all reach low-loss regions with InD data (training and test data), yet yield significantly different loss landscapes with OoD data. Such an observation provides a novel view to investigate the OoD detection from the loss landscape and further suggests significantly fluctuating OoD detection performance across these modes. For instance, FPR values of the RankFeat method can range from 46.58% to 84.70% among 5 modes, showing uncertain detection performance evaluations across independent modes. Motivated by such diversities on OoD loss landscape across modes, we revisit the deep ensemble method for OoD detection through mode ensemble, leading to improved performance and benefiting the OoD detector with reduced variances. Extensive experiments covering varied OoD detectors and network structures illustrate high variances across modes and also validate the superiority of mode ensemble in boosting OoD detection. We hope this work could attract attention in the view of independent modes in the OoD loss landscape and more reliable evaluations on OoD detectors

    On Multi-head Ensemble of Smoothed Classifiers for Certified Robustness

    Full text link
    Randomized Smoothing (RS) is a promising technique for certified robustness, and recently in RS the ensemble of multiple deep neural networks (DNNs) has shown state-of-the-art performances. However, such an ensemble brings heavy computation burdens in both training and certification, and yet under-exploits individual DNNs and their mutual effects, as the communication between these classifiers is commonly ignored in optimization. In this work, starting from a single DNN, we augment the network with multiple heads, each of which pertains a classifier for the ensemble. A novel training strategy, namely Self-PAced Circular-TEaching (SPACTE), is proposed accordingly. SPACTE enables a circular communication flow among those augmented heads, i.e., each head teaches its neighbor with the self-paced learning using smoothed losses, which are specifically designed in relation to certified robustness. The deployed multi-head structure and the circular-teaching scheme of SPACTE jointly contribute to diversify and enhance the classifiers in augmented heads for ensemble, leading to even stronger certified robustness than ensembling multiple DNNs (effectiveness) at the cost of much less computational expenses (efficiency), verified by extensive experiments and discussions

    Binary Classification of Multigranulation Searching Algorithm Based on Probabilistic Decision

    Get PDF
    Multigranulation computing, which adequately embodies the model of human intelligence in process of solving complex problems, is aimed at decomposing the complex problem into many subproblems in different granularity spaces, and then the subproblems will be solved and synthesized for obtaining the solution of original problem. In this paper, an efficient binary classification of multigranulation searching algorithm which has optimal-mathematical expectation of classification times for classifying the objects of the whole domain is established. And it can solve the binary classification problems based on both multigranulation computing mechanism and probability statistic principle, such as the blood analysis case. Given the binary classifier, the negative sample ratio, and the total number of objects in domain, this model can search the minimum mathematical expectation of classification times and the optimal classification granularity spaces for mining all the negative samples. And the experimental results demonstrate that, with the granules divided into many subgranules, the efficiency of the proposed method gradually increases and tends to be stable. In addition, the complexity for solving problem is extremely reduced
    • …
    corecore