28 research outputs found

    The ferroelectric phase of CdTiO3. A powder neutron diffraction study.

    Get PDF
    The synthesis of bulk samples of polycrystalline CdTiO3 in both the rhombohedral ilmenite and orthorhombic perovskite forms is described and the structures of these have been refined using powder neutron diffraction data. This involved the preparation of samples enriched in Cd-114. Cooling perovskite-type CdTiO3 to 4 K induces a ferroelectric phase transition, with the neutron data suggesting the low temperature structure is in Pna21. Mode analysis shows the polar mode to be dominant at low temperatures. The ilmenite-structure of CdTiO3 is compared with that of ZnTiO3. The refined scattering length of the Cd-114 is estimated to be 5.56 fm.Australian Research Counci

    Multi-scale Structural Analysis of the A-site and Oxygen Deficient Perovskite Sr11Mo4O2

    Get PDF
    The long range average crystal structure, as well as the short and medium range structural features, of the A-site deficient and oxygen deficient perovskite Sr11Mo4O23 have been determined. Rietveld refinement of synchrotron X-ray and neutron powder diffraction data show that this compound is cubic with space group Fd-3m and a lattice parameter of a = 16.4108 Å. These findings contradict earlier reports of a tetragonal crystal structure. Sr11Mo4O23 appears to be isostructural with Ba11W4O23, except that the disordered coordination environment around one of the Mo sites seems to be a mixture of octahedral and square pyramidal instead of octahedral and tetrahedral. The short and medium range structural features have been inspected using the neutron pair distribution function (PDF). Short range correlations between the oxygen polyhedra surrounding the Mo(2) atom exist to avoid short O–O contacts. A model has been constructed which contains such correlations and is verified by reverse Monte Carlo (RMC) modeling of the PDF. The RMC refinements also give the distribution of inter-atomic distances in this compound which reveals how the various atomic positions are correlated and over what length scales. These results are important for understanding the ionic conduction pathways.Australian Research Counci

    Spin-gap opening accompanied by a strong magnetoelastic response in the S=1 magnetic dimer system Ba3BiRu2O9

    Full text link
    Neutron diffraction, magnetization, resistivity, and heat capacity measurements on the 6H-perovskite Ba3BiRu2O9 reveal simultaneous magnetic and structural dimerization driven by strong magnetoelastic coupling. An isostructural but strongly displacive first-order transition on cooling through T*=176 K is associated with a change in the nature of direct Ru-Ru bonds within Ru2O9 face-sharing octahedra. Above T*, Ba3BiRu2O9 is an S=1 magnetic dimer system with intradimer exchange interactions J0/kB=320 K and interdimer exchange interactions J'/kB=-160 K. Below T*, a spin-gapped state emerges with \Delta\approx220 K. Ab initio calculations confirm antiferromagnetic exchange within dimers, but the transition is not accompanied by long range-magnetic order.Comment: 5 pages, 5 figures, accepted by Physical Review

    Low temperature structure and the ferroelectric phase transitions in the CdTiO3 perovskite

    Get PDF
    The paraelectric-ferroelectric transition in CdTiO3 has been monitored using high resolution neutron diffraction data. This necessitated preparing a sample enriched in 114Cd. A subtle, but significant, anisotropy in the thermal expansion of the lattice parameters for CdTiO3 associated with the transition to the polar structure was observed. First-principles calculations are presented to understand energies, phonon dispersion, and structures of possible phases with different symmetries.Australian Research Counci

    High fat diet significantly changed the global gene expression profile involved in hepatic drug metabolism and pharmacokinetic system in mice.

    Get PDF
    Background: High fat diet impact transcription of hepatic genes responsible for drug metabolism and pharmacokinetics. Until now, researches just focused on a couple specific genes without a global profile showing. Age-dependent manner was also not noted well. This study aims to investigate the high fat diet effect on transcriptome of drug metabolism and pharmacokinetic system in mouse livers and show the age-dependent evidence. Methods: C57BL/6 male mice were used in this experiment. High fat diet was used to treat mice for 16 and 38 weeks. Serum total cholesterol, low density lipoprotein cholesterol, aspartate transaminase, and alanine transaminaselevels were measured. Meanwhile, Histology, RNA-Seq, RT-PCR analysis and fourteen major hepatic bile acids quantification were performed for the liver tissues. Data was mined at levels of genes, drug metabolism and pharmacokinetic sysem, and genome wide. Results: Treatment with high fat diet for 38 weeks significantly increased levels of serum lipids as well as aspartate transaminase, and alanine transaminase. Meanwhile, lipid accumulation in livers was observed. At week 38 of the experiment, the profile of 612 genes involved in drug metabolism and pharmacokinetics was significantly changed, indicated by a heatmap visulization and a principal component analysis. In total 210 genes were significantly regulated. Cyp3a11, Cyp4a10, and Cyp4a14 were down-regulated by 10-35 folds, while these three genes also were highly expressed in the liver. High fat diet regulated 11% of genome-wide gene while 30% of genes involved in the hepatic drug metabolism and pharmacokinetic system. Genes, including Conclusions: High fat diet changed the global transcription profile of hepatic drug metabolism and pharmacokinetic system with a age-dependent manner

    The key role of bismuth in the magnetoelastic transitions of Ba3BiIr2O9 and Ba3BiRu2O9 as revealed by chemical doping

    Get PDF
    The key role played by bismuth in an average intermediate oxidation state in the magnetoelastic spin-gap compounds Ba3BiRu2O9 and Ba3BiIr2O9 has been confirmed by systematically replacing bismuth with La3+ and Ce4+. Through a combination of powder diffraction (neutron and synchrotron), X-ray absorption spectroscopy, and magnetic properties measurements, we show that Ru/Ir cations in Ba3BiRu2O9 and Ba3BiIr2O9 have oxidation states between +4 and +4.5, suggesting that Bi cations exist in an unusual average oxidation state intermediate between the conventional +3 and +5 states (which is confirmed by the Bi L3-edge spectrum of Ba3BiRu2O9). Precise measurements of lattice parameters from synchrotron diffraction are consistent with the presence of intermediate oxidation state bismuth cations throughout the doping ranges. We find that relatively small amounts of doping (~10 at%) on the bismuth site suppress and then completely eliminate the sharp structural and magnetic transitions observed in pure Ba3BiRu2O9 and Ba3BiIr2O9, strongly suggesting that the unstable electronic state of bismuth plays a critical role in the behaviour of these materials

    Thermal expansion and cation disorder in Bi2InNbO7

    No full text
    The structure of the pyrochlore-type oxide Bi2InNbO7 has been investigated between room temperature and 700 °C using electron and synchrotron X-ray powder diffraction and at room temperature and 10 K using neutron diffraction methods. Bi2InNbO7 exhibit

    Composition- and temperature-dependent phase transitions in 1:3 ordered perovskites Ba 4- x Sr x NaSb 3 O 12

    No full text
    A series of 25 members of the 1:3 ordered perovskite family of the type Ba4-xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group Im over(3, -) m with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2

    Local crystal chemistry, structured diffuse scattering and the dielectric properties of (Bi 1- x Y x ) 2 ( M III Nb V )O 7 ( M = Fe 3+ , In 3+ ) Bi-pyrochlores

    No full text
    Electron diffraction is used to investigate the large amplitude displacive disorder characteristic of the Bi2(MIIINbV)O7 Bi-pyrochlores, Bi2InNbO7 and Bi2FeNbO7, as well as of their A site substituted Bi1.5Y0.5InNbO7 and Bi1.5Y0.5FeNbO7 variants. Highly structured diffuse distributions in the form of {110}* sheets of diffuse intensity perpendicular to the six 〈110〉 directions of real space along with 〈111〉* rods of diffuse intensity perpendicular to the four {111} real space planes are observed. The existence of this structured diffuse scattering is interpreted in terms of large amplitude, β-cristobalite-type tetrahedral rotations of the O′A2 tetrahedral framework sub-structure of the ideal pyrochlore structure type. Bond valence sum calculations are used to understand the local crystal chemistry responsible for such displacive disorder. The frequency-dependent dielectric properties of Bi2InNbO7 and Bi2FeNbO7 are also investigated along with the effect upon them of A site doping with Y
    corecore