38 research outputs found

    Circle Line Optimization of Shuttle Bus in Central Business District without Transit Hub

    Get PDF
    The building density of Central Business District (CBD) is usually high. Land for a bus terminal is insufficient. In this situation, passengers in CBD have to walk far to take a bus, or take a long time to wait for a taxi. To solve this problem, this paper proposes an indirect approach: the design of a circle line of shuttle bus as a dynamic bus terminal in CBD. The shuttle bus can deliver people to the bus station through a circle line. This approach not only reduces the traffic pressure in CBD, but also saves travel time of the passenger. A bi-objective model is proposed to design a circle line of a shuttle bus for CBD. The problem is solved by non-dominated sorting genetic algorithm (NSGA-II). Furthermore, the Dalian city in China has been chosen as the case study to test the proposed method. The results indicate that the method is effective for circle line optimization of shuttle bus in central business district without a bus terminal

    P.: Combining analytical and empirical approaches in tuning matrix transposition

    No full text
    Matrix transposition is an important kernel used in many applications. Even though its optimization has been the subject of many studies, an optimization procedure that targets the characteristics of current processor architectures has not been developed. In this paper, we develop an integrated optimization framework that addresses a number of issues, including tiling for the memory hierarchy, effective handling of memory misalignment, utilizing memory subsystem characteristics, and the exploitation of the parallelism provided by the vector instruction sets in current processors. A judicious combination of analytical and empirical approaches is used to determine the most appropriate optimizations. The absence of problem information until execution time is handled by generating multiple versions of the code- the best version is chosen at runtime, with assistance from minimal-overhead inspectors. The approach highlights aspects of empirical optimization that are important for similar computations with little temporal reuse. Experimental results on PowerPC G5 and Intel Pentium 4 demonstrate the effectiveness of the developed framework. Categories and Subject Descriptors D.3.4 [Programming Languages]: Processors—code generation; compilers; optimizatio

    Empirical Performance-Model Driven Data Layout Optimization ⋆

    No full text
    Abstract. Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best choice of parameters such as tile size and degree of loop unrolling is determined by executing different versions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation. While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like library generators, its effectiveness can be limited by the accuracy of the performance models used. In this paper, we describe an approach where a class of computations is modeled in terms of constituent operations that are empirically measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout optimization in the context of the Tensor Contraction Engine, a compiler for a high-level domainspecific language for expressing computational models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements on some representative computations from quantum chemistry.

    The Pleiotropic Regulator AdpA Regulates the Removal of Excessive Sulfane Sulfur in <i>Streptomyces coelicolor</i>

    No full text
    Reactive sulfane sulfur (RSS), including persulfide, polysulfide, and elemental sulfur (S8), has important physiological functions, such as resisting antibiotics in Pseudomonas aeruginosa and Escherichia coli and regulating secondary metabolites production in Streptomyces spp. However, at excessive levels it is toxic. Streptomyces cells may use known enzymes to remove extra sulfane sulfur, and an unknown regulator is involved in the regulation of these enzymes. AdpA is a multi-functional transcriptional regulator universally present in Streptomyces spp. Herein, we report that AdpA was essential for Streptomyces coelicolor survival when facing external RSS stress. AdpA deletion also resulted in intracellular RSS accumulation. Thioredoxins and thioredoxin reductases were responsible for anti-RSS stress via reducing RSS to gaseous hydrogen sulfide (H2S). AdpA directly activated the expression of these enzymes at the presence of excess RSS. Since AdpA and thioredoxin systems are widely present in Streptomyces, this finding unveiled a new mechanism of anti-RSS stress by these bacteria

    The Pleiotropic Regulator AdpA Regulates the Removal of Excessive Sulfane Sulfur in Streptomyces coelicolor

    No full text
    Reactive sulfane sulfur (RSS), including persulfide, polysulfide, and elemental sulfur (S8), has important physiological functions, such as resisting antibiotics in Pseudomonas aeruginosa and Escherichia coli and regulating secondary metabolites production in Streptomyces spp. However, at excessive levels it is toxic. Streptomyces cells may use known enzymes to remove extra sulfane sulfur, and an unknown regulator is involved in the regulation of these enzymes. AdpA is a multi-functional transcriptional regulator universally present in Streptomyces spp. Herein, we report that AdpA was essential for Streptomyces coelicolor survival when facing external RSS stress. AdpA deletion also resulted in intracellular RSS accumulation. Thioredoxins and thioredoxin reductases were responsible for anti-RSS stress via reducing RSS to gaseous hydrogen sulfide (H2S). AdpA directly activated the expression of these enzymes at the presence of excess RSS. Since AdpA and thioredoxin systems are widely present in Streptomyces, this finding unveiled a new mechanism of anti-RSS stress by these bacteria
    corecore