51 research outputs found

    Admittance Control of Four-link Bionic Knee Exoskeleton with Inertia Compensation

    Get PDF
    This paper proposes a control algorithm based on the admittance principle for the motion of the four-link bionic knee exoskeleton. Firstly, the interaction between the operator and the exoskeleton was converted into the desired trajectory of the exoskeleton. Then, the inertia compensation is achieved in light of the admittance features of exoskeleton movement. Finally, the validity of the admittance control method for four-link bionic knee was confirmed through simulation experiment. The simulation results show that the relative error of the joint angle between the operator and the exoskeleton was less than 5% at normal swinging frequency, and the interaction force between the manipulator and the exoskeleton was within ±0.5 N. The research findings lay a theoretical basis for practical application of exoskeletons

    The Role of Circulating Tight Junction Proteins in Evaluating Blood Brain Barrier Disruption following Intracranial Hemorrhage

    Get PDF
    Brain injury after intracranial hemorrhage (ICH) results in significant morbidity and mortality. Blood brain barrier (BBB) disruption is a hallmark of ICH-induced brain injury; however, data mirroring BBB disruption in human ICH are scarce. The aim of this study was to assess the significance of circulating biomarkers in evaluating BBB disruption after ICH. Twenty-two patients with ICH were recruited in this study. Concentrations of the tight junction proteins (TJs) Claudin-5 (CLDN5), Occludin (OCLN), and zonula occludens 1 (ZO-1) and vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were measured by using enzyme-linked immunosorbent assay in serum and cerebrospinal fluid (CSF) samples obtained from patients with ICH. The white blood cell (WBC) count in blood and CSF, albumin (ALB) levels in the CSF (ALB CSF ), and the BBB ratio were significantly higher in the ICH than in controls ( < 0.05). Significantly higher levels of CLDN5, OCLN, ZO-1, MMP-9, and VEGF in CSF were observed in the ICH group; these biomarkers were also positively associated with BBB ratio ( < 0.05). Our data revealed that circulating TJs could be considered the potential biomarkers reflecting the integrity of the BBB in ICH

    <i>Tremella fuciformis</i> Crude Polysaccharides Attenuates Steatosis and Suppresses Inflammation in Diet-Induced NAFLD Mice

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder characterized by an enhanced accumulation of lipids, which affects around 40% of the world’s population. The T. fuciformis fungus possesses immunomodulatory activity and other beneficial properties that may alleviate steatosis through a different mechanism. The present study was designed to evaluate the effect T. fuciformis crude polysaccharides (TFCP) on inflammatory and lipid metabolism gene expression, oxidative stress, and lipid profile. Mice were divided into groups receiving (a) a normal chow diet (NCD), (b) a methionine–choline-deficient (MCD) diet, and (c) a MCD diet with TFCP. Liver histopathology was performed, and the hepatic gene expression levels were estimated using qRT-PCR. The lipid profiles, ALT, AST, and efficient oxidative enzymes were analyzed using ELISA. The TFCP administration in the MCD-fed mice suppressed hepatic lipid accumulation, lipid metabolism-associated genes (HMGCR, FABP, SREBP, ACC, and FAS), and inflammation-associated genes (IL-1β, TLR4, TNF-α, and IL-6) whilst enhancing the expression of HNF4α genes. TFCP mitigated against oxidative stress and normalized healthy lipid profiles. These results highlighted that TFCP prevents NAFLD through the inhibition of oxidative stress and inflammation, suggesting TFCP would potentially be an effective therapeutic agent against NAFLD progression

    Two novel blue phosphorescent host materials containing phenothiazine-5,5-dioxide structure derivatives

    No full text
    Two novel D–A bipolar blue phosphorescent host materials based on phenothiazine-5,5-dioxide: 3-(9H-carbazol-9-yl)-10-ethyl-10H-phenothiazine-5,5-dioxide (CEPDO) and 10-butyl-3-(9H-carbazol-9-yl)-10H-phenothiazine-5,5-dioxide (CBPDO) were synthesized and characterized. The photophysical, electrochemical and thermal properties were systematically investigated. CEPDO and CBPDO not only have a high triplet energy but also show a bipolar behavior. Moreover, their fluorescence emission peaks are in the blue fluorescence region at 408 nm and the fluorescence quantum efficiency (Φ) of CEPDO and CBPDO were 62.5% and 59.7%, respectively. Both CEPDO and CBPDO showed very high thermal stability with decomposition temperatures (Td) of 409 and 396 °C as well as suitable HOMO and LUMO energy levels. This preferable performance suggests that CEPDO and CBPDO are alternative bipolar host materials for the PhOLEDs

    Ore Genesis of the Lower Urgen Porphyry Molybdenum Deposit in the Northern Great Xing’an Range, Northeast China: Constraints from Molybdenite Re-Os Dating, Fluid Inclusions, and H-O-S-Pb Isotopes

    No full text
    The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite porphyry stock. In this study, we present a detailed description of the ore geology, molybdenite Re-Os dating, H-O-S-Pb isotopic compositions, and fluid inclusion (FI) analyses including petrography, laser Raman, and microthermometry to precisely constrain the timing of ore formation, the origin of ore-forming fluids and materials, as well as the metal precipitation mechanism. Molybdenite Re-Os dating yielded two model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma, coeval with the regional Late Jurassic–Early Cretaceous molybdenum metallogenesis. The hydrothermal process can be divided into three stages: the quartz–molybdenite(–pyrite) stage, quartz–polymetallic sulfide stage, and quartz–carbonate stage. Four types of FIs were distinguished for quartz, including two-phase liquid-rich (L-type), saline (S-type), CO2-rich (C1-type), and CO2-bearing (C2-type) FIs. Microthermometric data showed that the homogenization temperatures and salinities from the early to late stages were 240–430 °C, 5.0–11.9, and 30.1–50.8 wt% NaCl equiv.; 180–280 °C and 3.0–9.1 wt% NaCl equiv.; and 120–220 °C and 0.2–7.9 wt% NaCl equiv., respectively, suggesting a decreasing trend. H-O isotopic compositions indicate that the ore-forming fluids were initially of magmatic origin with the increasing incorporation of meteoric water. S-Pb isotopic compositions indicate that the ore-forming materials originated from granitic magmas, and the mineralization is genetically related to the ore-bearing granite porphyry stock in the deposit. Fluid immiscibility and fluid–rock interaction are collectively responsible for the massive deposition of molybdenite in stage 1, whereas fluid mixing and immiscibility played a critical role in the deposition of polymetallic sulfide in stage 2

    Direct Differentiation of Human Embryonic Stem Cells to 3D Functional Hepatocyte-like Cells in Alginate Microencapsulation Sphere

    No full text
    Background: The lack of a stable source of hepatocytes is one of major limitations in hepatocyte transplantation and clinical applications of a bioartificial liver. Human embryonic stem cells (hESCs) with a high degree of self-renewal and totipotency are a potentially limitless source of a variety of cell lineages, including hepatocytes. Many techniques have been developed for effective differentiation of hESCs into functional hepatocyte-like cells. However, the application of hESC-derived hepatocyte-like cells (hESC-Heps) in the clinic has been constrained by the low yield of fully differentiated cells, small-scale culture, difficulties in harvesting, and immunologic graft rejection. To resolve these shortcomings, we developed a novel 3D differentiation system involving alginate-microencapsulated spheres to improve current hepatic differentiation, providing ready-to-use hESC-Heps. Methods: In this study, we used alginate microencapsulation technology to differentiate human embryonic stem cells into hepatocyte-like cells (hESC-Heps). Hepatic markers of hESC-Heps were examined by qPCR and Western blotting, and hepatic functions of hESC-Heps were evaluated by indocyanine-green uptake and release, and ammonia removal. Results: The maturity and hepatic functions of the hESC-Heps derived from this 3D system were better than those derived from 2D culture. Hepatocyte-enriched genes, such as HNF4&alpha;, AFP, and ALB, were expressed at higher levels in 3D hESC-Heps than in 2D hESC-Heps. 3D hESC-Heps could metabolize indocyanine green and had better capacity to scavenge ammonia. In addition, the 3D sodium alginate hydrogel microspheres could block viral entry into the microspheres, and thus protect hESC-Heps in 3D microspheres from viral infection. Conclusion: We developed a novel 3D differentiation system for differentiating hESCs into hepatocyte-like cells by using alginate microcapsules
    • …
    corecore