9,236 research outputs found
Production of heavy isotopes in transfer reactions by collisions of U+U
The dynamics of transfer reactions in collisions of two very heavy nuclei
U+U is studied within the dinuclear system (DNS) model.
Collisions of two actinide nuclei form a super heavy composite system during a
very short time, in which a large number of charge and mass transfers may take
place. Such reactions have been investigated experimentally as an alternative
way for the production of heavy and superheavy nuclei. The role of collision
orientation in the production cross sections of heavy nuclides is analyzed
systematically. Calculations show that the cross sections decrease drastically
with increasing the charged numbers of heavy fragments. The transfer mechanism
is favorable to synthesize heavy neutron-rich isotopes, such as nuclei around
the subclosure at N=162 from No (Z=102) to Db (Z=105).Comment: 4 pages, 4 figure
QCD and Relativistic Corrections to Hadronic Decays of Spin-Singlet Heavy Quarkonia and
We calculate the annihilation decay widths of spin-singlet heavy quarkonia
and } into light hadrons with both QCD and relativistic
corrections at order in nonrelativistic QCD. With
appropriate estimates for the long-distance matrix elements by using the
potential model and operator evolution method, we find that our predictions of
these decay widths are consistent with recent experimental measurements. We
also find that the corrections are small for
states but substantial for states. In particular, the negative
contribution of correction to the decay can lower
the decay width, as compared with previous predictions without the
correction, and thus result in a good agreement with the
recent BESIII measurement.Comment: version published in PRD, 30 pages, 8 figures, more discussions on
LDMEs adde
Elastic parton scattering and non-statistical event-by-event mean-pt fluctuations in Au + Au collisions at RHIC
Non-statistical event-by-event mean-pt fluctuations in Au + Au collisions at
sqrt(s_NN) = 130 and 200 GeV are analyzed in AMPT with string-melting, and the
results are compared with STAR data. The analysis suggests that in-medium
elastic parton scattering may contribute greatly to the mean-p_t fluctuations
in relativistic heavy-ion collisions. Furthermore, it is demonstrated that
non-statistical event-by-event mean-pt fluctuations can be used to probe the
initial partonic dynamics in these collisions. The comparison shows that with
an in-medium elastic parton scattering cross section sigma_p=10 mb, AMPT with
string-melting can well reproduce sqrt(s_NN) = 130 GeV data on the centrality
dependence of non-statistical event-by-event mean-pt fluctuations. The
comparison also shows that the fluctuation data for sqrt(s_NN) = 200 GeV Au +
Au collisions can be well reproduced with sigma_p between 6 and 10 mb.Comment: 6 pages, 3 figure
Formation of superheavy nuclei in cold fusion reactions
Within the concept of the dinuclear system (DNS), a dynamical model is
proposed for describing the formation of superheavy nuclei in complete fusion
reactions by incorporating the coupling of the relative motion to the nucleon
transfer process. The capture of two heavy colliding nuclei, the formation of
the compound nucleus and the de-excitation process are calculated by using an
empirical coupled channel model, solving a master equation numerically and
applying statistical theory, respectively. Evaporation residue excitation
functions in cold fusion reactions are investigated systematically and compared
with available experimental data. Maximal production cross sections of
superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles
are obtained. Isotopic trends in the production of the superheavy elements
Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal
combinations and the corresponding excitation energies are proposed.Comment: 18 pages, 8 figure
Probing for the Cosmological Parameters with PLANCK Measurement
We investigate the constraints on cosmological parameters especially for EoS
of dark energy, inflationary parameters, neutrino mass and curvature of
universe using simulated Planck data. Firstly we determine cosmological
parameters with current observations including ESSENCE, WMAP3, Boomerang-2K2,
CBI, VSA, ACBAR, SDSS LRG and 2dFGRS, and take best-fit model as the fiducial
model in simulations. In simulations we pay attention to the effects of
dynamical dark energy in determination of cosmological parameters. We add
simulated SNAP data to do all the simulations. Using present data, we find
Quintom dark energy model is mildly favored while \LambdaCDM remains a good
fit. In the framework of dynamical dark energy, the constraints on inflationary
parameters, m_{\nu} and \Omega_{K} become weak compared with the constraints in
\LambdaCDM. Intriguingly, we find that the inflationary models with a "blue"
tilt, which are excluded about 2\sigma in \LambdaCDM model, are well within
2\sigma region with the presence of the dynamics of dark energy. The upper
limits of neutrino mass are weakened by a factor of 2 (95% C.L.), say,
m_{\nu}<1.59 eV and m_{\nu}<1.53 eV for two forms of parametrization of the
equation of state of dark energy. The flat universe is a good fit to the
current data, namely, |\Omega_{K}|<0.03 (95% C.L.). With the simulated Planck
and SNAP data, dynamical dark energy and \LambdaCDM might be distinguished at
4\sigma. And uncertainties of inflationary parameters, m_{\nu} and \Omega_{K}
can be reduced obviously. We also constrain the rotation angle \Delta\alpha,
denoting possible cosmological CPT violation, with simulated Planck and CMBpol
data and find that our results are much more stringent than current constraint
and will verify cosmological CPT symmetry with a higher precision. (Abridged)Comment: 15 pages, 8 figures and 3 tables, Accepted for publication in
Int.J.Mod.Phys.
Determining Cosmological Parameters with Latest Observational Data
In this paper, we combine the latest observational data, including the WMAP
five-year data (WMAP5), BOOMERanG, CBI, VSA, ACBAR, as well as the Baryon
Acoustic Oscillations (BAO) and Type Ia Supernoave (SN) "Union" compilation
(307 sample) to determine the cosmological parameters. Our results show that
the CDM model remains a good fit to the current data. In a flat
universe, we obtain the tight limit on the constant EoS of dark energy as,
(). For the dynamical dark energy models with time
evolving EoS, we find that the best-fit values are and ,
implying the preference of Quintom model whose EoS gets across the cosmological
constant boundary. For the curvature of universe, our results give
(95% C.L.) when fixing w_{\DE}=-1. When considering
the dynamics of dark energy, the flat universe is still a good fit to the
current data. Regarding the neutrino mass limit, we obtain the upper limits,
eV (95% C.L.) within the framework of the flat
CDM model. When adding the SDSS Lyman- forest power spectrum
data, the constraint on can be significantly improved, eV (95% C.L.). Assuming that the primordial fluctuations are
adiabatic with a power law spectrum, within the CDM model, we find
that the upper limit on the ratio of the tensor to scalar is (95%
C.L.) and the inflationary models with the slope are excluded at
more than confidence level. However, in the framework of dynamical
dark energy models, the allowed region in the parameter space of (,) is
enlarged significantly. Finally, we find no evidence for the large running of
the spectral index. (Abridged)Comment: 8 pages, 5 figures, 2 tables, More discussion on NE
- β¦