5,077 research outputs found

    Topological Imbert-Fedorov shift in Weyl semimetals

    Full text link
    The Goos-H\"anchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we report the GH and IF shifts in Weyl semimetals (WSMs) - a promising material harboring low energy Weyl fermions, a massless fermionic cousin of photons. Our results show that GH shift in WSMs is valley-independent which is analogous to that discovered in a 2D relativistic material - graphene. However, the IF shift has never been explored in non-optical systems, and here we show that it is valley-dependent. Furthermore, we find that the IF shift actually originates from the topological effect of the system. Experimentally, the topological IF shift can be utilized to characterize the Weyl semimetals, design valleytronic devices of high efficiency, and measure the Berry curvature

    Coherent Single Spin Source based on topological insulator

    Get PDF
    We report on the injection of quantized pure spin current into quantum conductors. In particular, we propose an on demand single spin source generated by periodically varying the gate voltages of two quantum dots that are connected to a two dimensional topological insulator via tunneling barriers. Due to the nature of the helical states of the topological insulator, one or several {\it spin pair}s can be pumped out per cycle giving rise to a pure quantized alternating spin current. Depending on the phase difference between two gate voltages, this device can serve as an on demand single spin emitter or single charge emitter. Again due to the helicity of the topological insulator, the single spin emitter or charge emitter is dissipationless and immune to disorders. The proposed single spin emitter can be an important building block of future spintronic devices.Comment: 5 pages, 4 figures, append one co-author that has been misse

    The topological system with a twisting edge band: position-dependent Hall resistance

    Full text link
    We study a ν=1\nu=1 topological system with one twisting edge-state band and one normal edge-state band. For the twisting edge-state band, Fermi energy goes through the band three times, thus, having three edge states on one side of the sample; while the normal edge band contributes only one edge state on the other side of the sample. In such a system, we show that it consists of both topologically protected and unprotected edge states, and as a consequence, its Hall resistance depends on the location where the Hall measurement is done even for a translationally invariant system. This unique property is absent in a normal topological insulator

    Numerical investigation on aggregate settlement and its effect on the durability of hardened concrete

    Get PDF
    Vibrating consolidation process is widely applied to field construction of cement concrete. However, high-frequency vibration can easily lead to the settlement of coarse aggregates (CAs) and then affects the durability of hardened concrete. This study has developed a 3-D concrete model to investigate the CA settlement caused by vibration and its effect on long-term chloride transport in concrete. Based on the proposed model, the influence mechanism of CA settlement on both chloride concentration distribution and initiation time of reinforcement corrosion is discussed in detail. The results indicate that due to the settlement, a more obvious fluctuation of chloride concentration along the height direction of concrete specimen can be observed with the increase of vibration time. According to the model prediction, the corrosion of the top steel bar initiates 1.03–1.80 years earlier than that of the bottom steel bar under different vibration time. The proposed model provides a new method to probe into the influence of vibration-induced settlement on chloride ingress in hardened concrete
    • …
    corecore