11,014 research outputs found

    Application of a simplified probe feed impedance formula to the design of a dual frequency patch antenna

    Get PDF
    A simplified probe feed input impedance for a rectangular patch antenna based on the Green's function is used to design a dual frequency matched antenna. The predicted results at design frequencies of 1.9 and 2.4 GHz are in close agreement with experimental measurements

    Optimal 1->M universal quantum cloning via spin networks

    Full text link
    We present a scheme that transform 1 qubit to M identical copies with optimal fidedelity via free dynamical evolution of spin star networks. We show that the Heisenberg XXZ coupling can fulfill the challenge. The initial state of the copying machine and the parameters of the spin Hamiltonian are discussed in detail. Furthermore we have proposed a feasible method to prepare the initial state of the copying machine.Comment: 4 pages, 2 figure

    Modeling incompressible thermal flows using a central-moment-based lattice Boltzmann method

    Get PDF
    In this paper, a central-moment-based lattice Boltzmann (CLB) method for incompressible thermal flows is proposed. In the method, the incompressible Navier-Stokes equations and the convection-diffusion equation for the temperature field are sloved separately by two different CLB equations. Through the Chapman-Enskog analysis, the macroscopic governing equations for incompressible thermal flows can be reproduced. For the flow field, the tedious implementation for CLB method is simplified by using the shift matrix with a simplified central-moment set, and the consistent forcing scheme is adopted to incorporate forcing effects. Compared with several D2Q5 multiple-relaxation-time (MRT) lattice Boltzmann methods for the temperature equation, the proposed method is shown to be better Galilean invariant through measuring the thermal diffusivities on a moving reference frame. Thus a higher Mach number can be used for convection flows, which decreases the computational load significantly. Numerical simulations for several typical problems confirm the accuracy, efficiency, and stability of the present method. The grid convergence tests indicate that the proposed CLB method for incompressible thermal flows is of second-order accuracy in space
    • 

    corecore