949 research outputs found

    NMR Study of the New Magnetic Superconductor CaK(Fe$0.951Ni0.049)4As4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    Get PDF
    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75^{75}As nuclear magnetic resonance study on single-crystalline CaK(Fe0.951_{0.951}Ni0.049_{0.049})4_4As4_4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the cc axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature TNT_{\rm N} \sim 52 K. The nuclear spin-lattice relaxation rate 1/T1T_1 shows a distinct decrease below TcT_{\rm c} \sim 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T1T_1 data, the hedgehog SVC-type spin correlations are found to be enhanced below TT \sim 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. B rapid communicatio

    Charge disproportionation in the spin-liquid candidate κ − (ET)2Cu2(CN)3 at 6 K revealed by 63Cu NQR measurements

    Get PDF
    The spin-liquid candidate κ−(ET)2Cu2(CN)3 [ET: bis(ethylenedithio)tetrathiafulvalene] does not exhibit magnetic ordering down to a very low temperature, but shows a mysterious anomaly at 6 K. The origin of the so-called 6-K anomaly is still under debate. We carried out nuclear quadrupole resonance (NQR) measurements on the copper sites of the insulating layers, which are sensitive to the charge dynamics unlike conventional spin-1/2 nuclear magnetic resonance (NMR). The main finding of this Rapid Communication is that the observation of a sharp peak behavior in the nuclear spin-lattice relaxation rate T−11 of 63Cu NQR at 6 K while T−11 of both 13C and 1H NMR show no clear anomaly. This behavior can be understood as a second-order phase transition related to charge disproportionation in the ET layers

    Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    Full text link
    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than \hbar is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π2\pi-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of the arbitrary-quantization.Comment: 6 pages, 5 figure

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Limit theorems for delayed sums of random sequence

    Get PDF

    Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

    Full text link
    We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO1x_{1-x}Fx_{x}. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity

    Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide

    Get PDF
    Damage caused by implanted helium (He) is a major concern for material performance in future nuclear reactors. We use a combination of experiments and modeling to demonstrate that amorphous silicon oxycarbide (SiOC) is immune to He-induced damage. By contrast with other solids, where implanted He becomes immobilized in nanometer-scale precipitates, He in SiOC remains in solution and outgasses from the material via atomic-scale diffusion without damaging its free surfaces. Furthermore, the behavior of He in SiOC is not sensitive to the exact concentration of carbon and hydrogen in this material, indicating that the composition of SiOC may be tuned to optimize other properties without compromising resistance to implanted He

    Low-temperature Synthesis of FeTe0.5Se0.5 Polycrystals with a High Transport Critical Current Density

    Full text link
    We have prepared high-quality polycrystalline FeTe0.5Se0.5 at temperature as low as 550{\deg}C. The transport critical current density evaluated by the current-voltage characteristics is over 700 A/cm2 at 4.2 K under zero field, which is several times larger than FeTe0.5Se0.5 superconducting wires. The critical current density estimated from magneto-optical images of flux penetration is also similar to this value. The upper critical field of the polycrystalline FeTe0.5Se0.5 at T = 0 K estimated by Werthamer-Helfand-Hohenberg theory is 585 kOe, which is comparable to that of single crystals. This study gives some insight into how to improve the performance of FeTe0.5Se0.5 superconducting wires.Comment: 12 pages, 6 figure
    corecore