3,422 research outputs found

    Superconducting state in the non-centrosymmetric Mg_{9.3}Ir_{19}B_{16.7} and Mg_{10.5}Ir_{19}B_{17.1} revealed by NMR

    Full text link
    We report ^{11}B NMR measurements in non-centrosymmetric superconductors Mg_{9.3}Ir_{19}B_{16.7} (T_c=5.8 K) and Mg_{10.5}Ir_{19}B_{17.1} (T_c=4.8 K). The spin lattice relaxation rate and the Knight shift indicate that the Cooper pairs are predominantly in the spin-singlet state with an isotropic gap. However, Mg_{10.5}Ir_{19}B_{17.1} is found to have more defects and the spin susceptibility remains finite even in the zero-temperature limit. We interpret this result as that the defects enhance the spin-orbit coupling and bring about more spin-triplet component.Comment: for a proper, high-resolution Fig.5, contact the corresponding autho

    Theory for high spin systems with orbital degeneracy

    Full text link
    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighbouring bonds interact antiferromagnetically. The possible relevance to the transition metal oxides are discussed.Comment: 4 page, three figures, to appear in Phys. Rev. Let

    DehazeNet: An end-to-end system for single image haze removal

    Full text link
    © 1992-2012 IEEE. Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, the layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called bilateral rectified linear unit, which is able to improve the quality of recovered haze-free image. We establish connections between the components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use

    Organoaluminium complexes of ortho-, meta-, para-anisidines: synthesis, structural studies and ROP of ε-caprolactone (and rac-lactide)

    Get PDF
    Reaction of Me₃Al (two equivalents) with ortho-, meta- or para-anisidine, (OMe)(NH₂)C₆H₄, affords the complexes {[1,2-(OMe),NC₆H₄(μ-Me₂Al)](μ-Me₂Al)}₂ (1), [1,3-(Me₃AlOMe),NHC₆H₄(μ-Me₂Al)]2 (2) or [1,4-(Me₃AlOMe),NHC₆H₄(μ-Me₂Al)]₂ (3), respectively. The molecular structures of 1–3 have been determined and all three complexes were found to be highly active for the ring opening polymerization (ROP) of ε-caprolactone. 1 was found highly active either with or without benzyl alcohol present; at various temperatures, the activity order 1 > 2 ≈ 3 was observed. For the ROP of rac-lactide results for 1–3 were poor

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Physical accessible transformations on a finite number of quantum states

    Get PDF
    We consider to treat the usual probabilistic cloning, state separation, unambiguous state discrimination, \emph{etc} in a uniform framework. All these transformations can be regarded as special examples of generalized completely positive trace non-increasing maps on a finite number of input states. From the system-ancilla model we construct the corresponding unitary implementation of pure \to pure, pure \to mixed, mixed \to pure, and mixed \to mixed states transformations in the whole system and obtain the necessary and sufficient conditions on the existence of the desired maps. We expect our work will be helpful to explore what we can do on a finite set of input states.Comment: 7 page

    Low-carbon development via greening global value chains: a case study of Belarus

    Get PDF
    The rise of global value chains (GCVs) has seen the transfer of carbon emissions embodied in every step of international trade. Building a coordinated, inclusive and green GCV can be an effective and efficient way to achieve carbon emissions mitigation targets for countries that participate highly in GCVs. In this paper, we first describe the energy consumption as well as the territorial and consumption-based carbon emissions of Belarus and its regions from 2010 to 2017. The results show that Belarus has a relatively clean energy structure with 75% of Belarus' energy consumption coming from imported natural gas. The ‘chemical, rubber and plastic products' sector has expanded significantly over the past few years; its territorial-based emissions increased 10-fold from 2011 to 2014, with the ‘food processing' sector displaying the largest increase in consumption-based emissions. An analysis of regional emissions accounts shows that there is significant regional heterogeneity in Belarus with Mogilev, Gomel and Vitebsk having more energy-intensive manufacturing industries. We then analysed the changes in Belarus' international trade as well as its emission impacts. The results show that Belarus has changed from a net carbon exporter in 2011 to a net carbon importer in 2014. Countries along the Belt and Road Initiative, such as Russia, China, Ukraine, Poland and Kazakhstan, are the main trading partners and carbon emission importers/exporters for Belarus. ‘Construction’ and ‘chemical, rubber and plastic products' are two major emission-importing sectors in Belarus, while ‘electricity' and ‘ferrous metals' are the primary emission-exporting sectors. Possible low-carbon development pathways are discussed for Belarus through the perspectives of global supply and the value chain

    Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3

    Full text link
    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic resonance measurements, we show that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity

    Static flow on complete noncompact manifolds I: short-time existence and asymptotic expansions at conformal infinity

    Full text link
    In this paper, we study short-time existence of static flow on complete noncompact asymptotically static manifolds from the point of view that the stationary points of the evolution equations can be interpreted as static solutions of the Einstein vacuum equations with negative cosmological constant. For a static vacuum (Mn,g,V),(M^n,g,V), we also compute the asymptotic expansions of gg and VV at conformal infinity.Comment: 25 page

    Exact Analysis of Scaling and Dominant Attractors Beyond the Exponential Potential

    Full text link
    By considering the potential parameter Γ\Gamma as a function of another potential parameter λ\lambda[47], We successfully extend the analysis of two-dimensional autonomous dynamical system of quintessence scalar field model to the analysis of three-dimension, which makes us be able to research the critical points of a large number of potentials beyond the exponential potential exactly. We find that there are ten critical points in all, three points P3,5,6P_{3, 5, 6}} are general points which are possessed by all quintessence models regardless of the form of potentials and the rest points are closely connected to the concrete potentials. It is quite surprising that, apart from the exponential potential, there are a large number of potentials which can give the scaling solution when the function f(λ)(=Γ(λ)1)f(\lambda)(=\Gamma(\lambda)-1) equals zero for one or some values of λ\lambda_{*} and if the parameter λ\lambda_{*} also satisfies the condition Eq.(16) or Eq.(17) at the same time. We give the differential equations to derive these potentials V(ϕ)V(\phi) from f(λ)f(\lambda). We also find that, if some conditions are satisfied, the de-Sitter-like dominant point P4P_4 and the scaling solution point P9P_9(or P10P_{10}) can be stable simultaneously but P9P_9 and P10P_{10} can not be stable simultaneity. Although we survey scaling solutions beyond the exponential potential for ordinary quintessence models in standard general relativity, this method can be applied to other extensively scaling solution models studied in literature[46] including coupled quintessence, (coupled-)phantom scalar field, k-essence and even beyond the general relativity case H2ρTnH^2 \propto\rho_T^n. we also discuss the disadvantage of our approach.Comment: 16 pages,no figure, this new revision has taken the suggestions from CQG referees and has been accepted for publication in Classical and Quantum Gravit
    corecore