6,945 research outputs found

    4-Amino-3,5-dichloro­benzene­sulfonamide

    Get PDF
    In the title compound, C6H6Cl2N2O2S, the O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side. An inter­molecular N—H⋯Cl inter­action occurs. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds, forming a three-dimensional structure with supporting π–π stacking inter­actions [centroid–centroid distance = 3.7903 (12) Å]. A short Cl⋯Cl contact [3.3177 (10) Å] also occurs

    Diagnosis and Treatment of Tracheal or Bronchuotracheal Adenoid Cystic Carcinoma

    Get PDF
    Background and objective Adenoid cystic carcinoma is primary bronchopulmonary carcinoma with low malignancy, and 43 patients treated in the past 50 years in our hospital were retrospectively studied. The aim of this study is to discuss the clinical symptoms, pathologic characteristic and therapeutic method of primary tracheal or bronchuotracheal adenoid cystic carcinoma. Methods This study summarized total 43 patients of primary tracheal or bronchus adenoid cystic carcinoma treated in our hospital from Jan. 1958 to Dec. 2007. Among them, 40 patients were treated by surgical resection, and 3 patients were treated by fiberoptic bronchoscope’s interventional treatment. Results The 1-yr, 3-yr, 5-yr survival rates of the 43 patients above were 100% (41/41), 89.5% (34/38), 87.1% (27/31), respectively. Conclusion Primary tracheal or bronchus adenoid cystic carcinoma are rare and low malignancy carcinoma. The clinical symptoms of them are not typical. The best treatment is early detection and taking measures of operation plus radiotherapy. The other palliative treatment is fiberoptic bronchoscope’s interventional treatment

    Impact of ocean acidification on microzooplankton grazing dynamics

    Get PDF
    This study examines the potential impacts of projected atmospheric carbon dioxide (pCO2) levels reaching 800 ppm by the end of the century, focusing on ocean acidification effects on marine ecosystems in the coastal areas of Bohai. We investigated how acidification affects the grazing patterns of microzooplankton using dilution techniques and ecophysiological methods. Our findings indicate that acidic conditions shift the phytoplankton community structure, changing dominant species. Elevated CO2 concentrations reduced grazing pressure on phytoplankton, with less steep declines in growth rates at 800 ppm CO2 (spring: 2.43 d−1 vs. 2.16 d−1, summer: −0.46 d−1 vs. −0.73 d−1, autumn: −0.45 d−1 vs. −0.90 d−1) and significant decreases in grazing pressure percentages (%Pp from 0.84 to 0.58 and %Pi from 0.64 to 0.46). Short-term acid exposure significantly increased superoxide dismutase activity in both microplankton (from 0.03 to 0.08 U mg−1, p<0.01) and nanoplankton (from 0.05 to 0.09 U mg−1, p<0.001), indicating an adaptive response to oxidative stress. These results highlight that elevated CO2 levels primarily boost phytoplankton growth by reducing microzooplankton grazing pressure, resulting in higher growth rates and a shift towards smaller-sized phytoplankton, reflecting complex short-term ecological responses to acidification. Further research is needed to understand the long-term effects of ocean acidification on microzooplankton and their role in marine secondary productivity

    Neutralization of IL- 10 produced by B cells promotes protective immunity during persistent HCV infection in humanized mice

    Full text link
    Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)- 10- producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV- induced B10 cells were enriched in CD19hi and CD1dhiCD5+ cell populations. HCV predominantly triggered the TLR2- MyD88- NF- κB and AP- 1 signaling pathways to drive IL- 10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL- 10 produced by B10 cells, mice were treated with pcCD19scFv- IL- 10R, which contains the genes coding the anti- CD19 single- chain variable fragment (CD19scFv) and the extracellular domain of IL- 10 receptor alpha chain (sIL- 10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T- cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL- 10 may offer a novel strategy to enhance anti- HCV immunotherapy.HCV predominantly triggers the TLR2- MyD88- NF- κB and AP- 1 signaling pathways to drive IL- 10 production by B cells. Neutralization of IL- 10 produced by B10 cells promotes anti- HCV immunity in a humanized murine model of persistent HCV infection. These results provide insight into a novel immunotherapy strategy for HCV treatment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162732/2/eji4736.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162732/1/eji4736_am.pd

    Dynamic Stability of Euler Beams under Axial Unsteady Wind Force

    Get PDF
    Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not

    Bis[μ-N′-(adamantan-1-ylcarbon­yl)-2-oxidobenzohydrazidato(3−)]tetra­pyridine­trinickel(II) dimethyl­formamide monosolvate monohydrate

    Get PDF
    In the title trinuclear NiII compound, [Ni3(C18H19N2O3)2(C5H5N)4]·C3H7NO·H2O, three NiII cations are bridged by two N′-(adamantan-1-ylcarbon­yl)-2-oxidobenzohydrazidate trianions. The central NiII cation has a distorted octa­hedral N4O2 coordination environment where a reverse torsion occurs between the two bridging ligands, whereas the two NiII cations on the sides each adopt an N2O2 square-planar coordination. Weak intra­molecular C—H⋯O and C—H⋯N inter­actions help to stabilize the mol­ecular structure. In the crystal, the lattice water mol­ecule links with the NiII complex and dimethyl­formamide solvent mol­ecule via O—H⋯O hydrogen bonding

    Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction

    Get PDF
    In heterogeneous catalysis, the interface between active metal and support plays a key role in catalyzing various reactions. Specially, the synergistic effect between active metals and oxygen vacancies on support can greatly promote catalytic efficiency. However, the construction of high-density metal-vacancy synergistic sites on catalyst surface is very challenging. In this work, isolated Pt atoms are first deposited onto a very thin-layer of MoO3 surface stabilized on γ-Mo2N. Subsequently, the Pt–MoOx/γ-Mo2N catalyst, containing abundant Pt cluster-oxygen vacancy (Ptn–Ov) sites, is in situ constructed. This catalyst exhibits an unmatched activity and excellent stability in the reverse water-gas shift (RWGS) reaction at low temperature (300 °C). Systematic in situ characterizations illustrate that the MoO3 structure on the γ-Mo2N surface can be easily reduced into MoOx (2 < x < 3), followed by the creation of sufficient oxygen vacancies. The Pt atoms are bonded with oxygen atoms of MoOx, and stable Pt clusters are formed. These high-density Ptn–Ov active sites greatly promote the catalytic activity. This strategy of constructing metal-vacancy synergistic sites provides valuable insights for developing efficient supported catalysts
    corecore