13,945 research outputs found

    Empirical Study of Deep Learning for Text Classification in Legal Document Review

    Full text link
    Predictive coding has been widely used in legal matters to find relevant or privileged documents in large sets of electronically stored information. It saves the time and cost significantly. Logistic Regression (LR) and Support Vector Machines (SVM) are two popular machine learning algorithms used in predictive coding. Recently, deep learning received a lot of attentions in many industries. This paper reports our preliminary studies in using deep learning in legal document review. Specifically, we conducted experiments to compare deep learning results with results obtained using a SVM algorithm on the four datasets of real legal matters. Our results showed that CNN performed better with larger volume of training dataset and should be a fit method in the text classification in legal industry.Comment: 2018 IEEE International Conference on Big Data (Big Data

    Event-Triggered Algorithms for Leader-Follower Consensus of Networked Euler-Lagrange Agents

    Full text link
    This paper proposes three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. By model-independent, we mean that each agent can execute its algorithm with no knowledge of the agent self-dynamics. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed which requires more information about the agent dynamics but can estimate uncertain agent parameters. For each algorithm, a trigger function is proposed to govern the event update times. At each event, the controller is updated, which ensures that the control input is piecewise constant and saves energy resources. We analyse each controllers and trigger function and exclude Zeno behaviour. Extensive simulations show 1) the advantages of our proposed trigger function as compared to those in existing literature, and 2) the effectiveness of our proposed controllers.Comment: Extended manuscript of journal submission, containing omitted proofs and simulation

    Optimizing Taxi Carpool Policies via Reinforcement Learning and Spatio-Temporal Mining

    Full text link
    In this paper, we develop a reinforcement learning (RL) based system to learn an effective policy for carpooling that maximizes transportation efficiency so that fewer cars are required to fulfill the given amount of trip demand. For this purpose, first, we develop a deep neural network model, called ST-NN (Spatio-Temporal Neural Network), to predict taxi trip time from the raw GPS trip data. Secondly, we develop a carpooling simulation environment for RL training, with the output of ST-NN and using the NYC taxi trip dataset. In order to maximize transportation efficiency and minimize traffic congestion, we choose the effective distance covered by the driver on a carpool trip as the reward. Therefore, the more effective distance a driver achieves over a trip (i.e. to satisfy more trip demand) the higher the efficiency and the less will be the traffic congestion. We compared the performance of RL learned policy to a fixed policy (which always accepts carpool) as a baseline and obtained promising results that are interpretable and demonstrate the advantage of our RL approach. We also compare the performance of ST-NN to that of state-of-the-art travel time estimation methods and observe that ST-NN significantly improves the prediction performance and is more robust to outliers.Comment: Accepted at IEEE International Conference on Big Data 2018. arXiv admin note: text overlap with arXiv:1710.0435
    • …
    corecore