14,400 research outputs found

    Development of a project level performance measurement model for improving collaborative design team work

    Get PDF
    This research explored a new direction of improving collaborative design by performance measurement. More specifically, a novel 3-dimensional performance measurement model is developed and the purpose of this model is to help project managers improve team collaboration by indicating strengths and weaknesses of team members during the project development process. Considering the complexity of collaborative design work, a multiple criteria model is proposed to reflect the design dynamics, which highlights five performance indicators: efficiency, effectiveness, collaboration, management skills and innovation. These five indicators are mostly influenced by role-based performance measurement criteria (the second dimension). Design and development process (time) is also considered (the third dimension). This 3D model allows all involved design participants to measure work performance at any time during the product development process. In order to develop this model, the role-based task analysis and industrial survey methods were utilized. Three groups of role-based product design and development performance measurement criteria were identified for measuring design performance of the top managers, middle managers and individual designers in a project team. A 3-dimensional performance measurement method was proposed to calculate final performance scores from a performance measurement matrix. The proposed model was evaluated as a tool which can support project managers to reduce potential design and collaboration risks and increase confidence in decision-making process. The model has been discussed on implementing in a web-based application for measuring design performance throughout the product design and development proces

    Fabrication of binder-free ultrafine WC-6CO composites by coupled multi-physical fields activation technology

    Get PDF
    A novel sintering method, named as coupled multi-physical fields activation technology, has been introduced for the forming of various material powder systems. Compared with the conventional ones, this technique presents more advantages: lower sintering temperature, shorter forming time, and remarkable inhibition of the grains coarsening. In the study, the cylinders of Φ4.0mm×4.0mm had been formed with ultrafine WC-6Co powders. The relative properties of sintered WC-6Co cemented carbides, such as hardness and the microstructures, had been obtained. The study has shown that a relative density, 97.80%, of the formed samples, could been achieved when the case of temperature 850℃, heating rate 50℃/s, pressure 75MPa and Electro-heating loop 6 times, were used. More importantly, the circumscription for the growth of grain size of WC, attributed to the effect of electrical field, renders coupled multi-physical fields activation technology applicable for getting WC-6Co cemented carbides with fine grain size and good properties

    Chiral magnetic currents with QGP medium response in heavy ion collisions at RHIC and LHC energies

    Full text link
    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.Comment: 10 pages, 12 figur

    Combining Subgoal Graphs with Reinforcement Learning to Build a Rational Pathfinder

    Full text link
    In this paper, we present a hierarchical path planning framework called SG-RL (subgoal graphs-reinforcement learning), to plan rational paths for agents maneuvering in continuous and uncertain environments. By "rational", we mean (1) efficient path planning to eliminate first-move lags; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG-RL works in a two-level manner. At the first level, SG-RL uses a geometric path-planning method, i.e., Simple Subgoal Graphs (SSG), to efficiently find optimal abstract paths, also called subgoal sequences. At the second level, SG-RL uses an RL method, i.e., Least-Squares Policy Iteration (LSPI), to learn near-optimal motion-planning policies which can generate kinematically feasible and collision-free trajectories between adjacent subgoals. The first advantage of the proposed method is that SSG can solve the limitations of sparse reward and local minima trap for RL agents; thus, LSPI can be used to generate paths in complex environments. The second advantage is that, when the environment changes slightly (i.e., unexpected obstacles appearing), SG-RL does not need to reconstruct subgoal graphs and replan subgoal sequences using SSG, since LSPI can deal with uncertainties by exploiting its generalization ability to handle changes in environments. Simulation experiments in representative scenarios demonstrate that, compared with existing methods, SG-RL can work well on large-scale maps with relatively low action-switching frequencies and shorter path lengths, and SG-RL can deal with small changes in environments. We further demonstrate that the design of reward functions and the types of training environments are important factors for learning feasible policies.Comment: 20 page

    Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes

    Get PDF
    In a thermally driven rotary motor made from double-walled carbon nanotubes, the rotor (inner tube) can be actuated to rotate within the stator (outer tube) when the environmental temperature is high enough. A sudden stoppage of the rotor can occur when the inner tube has been actuated to rotate at a stable high speed. To find the mechanisms of such sudden stoppages, eight motor models with the same rotor but different stators are built and simulated in the canonical NVT ensembles. Numerical results demonstrate that the sudden stoppage of the rotor occurs when the difference between radii is near 0.34 nm at a high environmental temperature. A smaller difference between radii does not imply easier activation of the sudden rotor stoppage. During rotation, the positions and electron density distribution of atoms at the ends of the motor show that a sp(1) bonded atom on the rotor is attracted by the sp(1) atom with the biggest deviation of radial position on the stator, after which they become two sp(2) atoms. The strong bond interaction between the two atoms leads to the loss of rotational speed of the rotor within 1 ps. Hence, the sudden stoppage is attributed to two factors: the deviation of radial position of atoms at the stator's ends and the drastic thermal vibration of atoms on the rotor in rotation. For a stable motor, sudden stoppage could be avoided by reducing deviation of the radial position of atoms at the stator's ends. A nanobrake can be, thus, achieved by adjusting a sp(1) atom at the ends of stator to stop the rotation of rotor quickly.The authors are grateful for financial support from the National Natural-Science-Foundation of China (Grant Nos. 50908190, 11372100)

    A review of codebooks for CSI feedback in 5G new radio and beyond

    Full text link
    Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009. They offer an efficient way to acquire the channel state information (CSI) for multiple antenna systems. Nowadays, a codebook is not limited to a set of pre-defined precoders, it refers to a CSI feedback framework, which is more and more sophisticated. In this paper, we review the codebooks in 5G New Radio (NR) standards. The codebook timeline and the evolution trend are shown. Each codebook is elaborated with its motivation, the corresponding feedback mechanism, and the format of the precoding matrix indicator. Some insights are given to help grasp the underlying reasons and intuitions of these codebooks. Finally, we point out some unresolved challenges of the codebooks for future evolution of the standards. In general, this paper provides a comprehensive review of the codebooks in 5G NR and aims to help researchers understand the CSI feedback schemes from a standard and industrial perspective.Comment: 11pages, 7 figures, 1 table, magzine revie
    • …
    corecore