39,850 research outputs found
One-dimensional kinetic description of nonlinear traveling-pulse (soliton) and traveling-wave disturbances in long coasting charged particle beams
This paper makes use of a one-dimensional kinetic model to investigate the
nonlinear longitudinal dynamics of a long coasting beam propagating through a
perfectly conducting circular pipe with radius . The average axial
electric field is expressed as , where and
are constant geometric factors, is the line density of beam particles, and
satisfies the 1D Vlasov equation. Detailed nonlinear
properties of traveling-wave and traveling-pulse (solitons) solutions with
time-stationary waveform are examined for a wide range of system parameters
extending from moderate-amplitudes to large-amplitude modulations of the beam
charge density. Two classes of solutions for the beam distribution function are
considered, corresponding to: (a) the nonlinear waterbag distribution, where
in a bounded region of -space; and (b) nonlinear
Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and
untrapped particle distributions to interact with the self-generated electric
field .
.Comment: 42 pages, 17 figure
Inclusion agglomeration in electrified molten metal: thermodynamic consideration
The effect of electric current on inclusion agglomeration in molten metal has been investigated. It is found that the agglomeration is dependent on the electric current density, distance between inclusions and orientation of electric field. Electric current retards the agglomeration unless two inclusions are aligned along or closely to the current flow streamlines and the distance between inclusions is less than a critical value. The mechanism is also validated in the computation of cluster agglomeration. The numerical results provide a comprehensive indication for the current-induced inclusion removal and current-induced inclusion elongation. When the inclusions are in long-thin shape, the calculation predicts the current-induced microstructure alignment and current-induced microstructure refinement phenomena
Applying scenarios in user-centred design to develop a sketching interface for human modelling and animation
This paper presents our user and usability studies for applying scenarios in user-centred design to develop a sketching interface for virtual human modelling and animation. In this approach, we utilise the User Centred System Design (UCSD) strategy and spiral lifecycles to ensure system usability and functionalities. A series of usability techniques were employed. After the initial conceptual design, a preliminary user study (including questionnaires and sketching observations) was undertaken to establish the formal interface design. Second, an informal user test was conducted on the first prototype: a “sketch-based 3D stick figure animation interface”. Finally, a formal user evaluation (including performance tests, sketching observations, and interviews) was carried out on the latest version: a “sketch-based virtual human builder”. During this iterative process, various paper-based and electronic-based sketching scenarios were created, which were acted-out by users to help designers evoke and verify design ideas, identify users’ needs, and test the prototype interfaces in real contexts. Benefiting from applying the UCSD strategy and scenario-based design to develop a natural and supportive sketching interface, our investigation can be a useful instantiation for the design of other sketching interfaces where these techniques have not been widely acknowledged and utilised in the past
A sketch-based gesture interface for rough 3D stick figure animation
This paper introduces a novel gesture interface for sketching out rough 3D stick figure animation. This interface can allow users to draw stick figures with the system automatic assistance in figure proportion control. Given a 2D hand-drawn stick figure under a parallel view, there is a challenge to reconstruct a unique 3D pose from a set of candidates. Our system utilizes figure perspective rendering, and introduces the concept of ‘thickness contrast’ as a sketch gesture combined with some other constraints/assumptions for pose recovery. The resulting pose can be further corrected, based on physical constraints of human body. Once obtaining a series of 3D stick figure poses, user can easily sketch out motion paths and timing, and add their preferable sound/background. The resulting 3D animation can be automatically synthesized in VRML. This system has been tested on a variety of input devices: electric whiteboard, tablet PC, as well as a standard mouse
Sketch-based virtual human modelling and animation
Animated virtual humans created by skilled artists play a remarkable role in today’s public entertainment. However, ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. We developed a new method and a novel sketching interface, which enable anyone who can draw to “sketch-out” 3D virtual humans and animation.
We devised a “Stick FigureFleshing-outSkin Mapping” graphical pipeline, which decomposes the complexity of figure drawing and considerably boosts the modelling and animation efficiency. We developed a gesture-based method for 3D pose reconstruction from 2D stick figure drawings. We investigated a “Creative Model-based Method”, which performs a human perception process to transfer users’ 2D freehand sketches into 3D human bodies of various body sizes, shapes and fat distributions. Our current system supports character animation in various forms including articulated figure animation, 3D mesh model animation, and 2D contour/NPR animation with personalised drawing styles. Moreover, this interface also supports sketch-based crowd animation and 2D storyboarding of 3D multiple character interactions. A preliminary user study was conducted to support the overall system design. Our system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes
Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation
Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes
- …