35,455 research outputs found
Path Integrals and Alternative Effective Dynamics in Loop Quantum Cosmology
The alternative dynamics of loop quantum cosmology is examined by the path
integral formulation. We consider the spatially flat FRW models with a massless
scalar field, where the alternative quantization inherit more features from
full loop quantum gravity. The path integrals can be formulated in both
timeless and deparameterized frameworks. It turns out that the effective
Hamiltonians derived from the two different viewpoints are equivalent to each
other. Moreover, the first-order modified Friedmann equations are derived and
predict quantum bounces for contracting universe, which coincide with those
obtained in canonical theory.Comment: 8 pages. arXiv admin note: substantial text overlap with
arXiv:1102.475
Dense Suspension Splat: Monolayer Spreading and Hole Formation After Impact
We use experiments and minimal numerical models to investigate the rapidly
expanding monolayer formed by the impact of a dense suspension drop against a
smooth solid surface. The expansion creates a lace-like pattern of particle
clusters separated by particle-free regions. Both the expansion and the
development of the spatial inhomogeneity are dominated by particle inertia,
therefore robust and insensitive to details of the surface wetting, capillarity
and viscous drag.Comment: 4 pages (5 with references), and a total of 4 figure
The fidelity of general bosonic channels with pure state input
We first derive for the general form of the fidelity for various bosonic
channels. Thereby we give the fidelity of different quantum bosonic channel,
possibly with product input and entangled input respectively, as examples. The
properties of the fidelity are carefully examined.Comment: 3 pages, comments welcom
Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor
Systematic ac susceptibility measurements have been performed on a MgB
bulk sample. We demonstrate that the flux creep activation energy is a
nonlinear function of the current density , indicating a
nonlogarithmic relaxation of the current density in this material. The
dependence of the activation energy on the magnetic field is determined to be a
power law , showing a steep decline in the activation
energy with the magnetic field, which accounts for the steep drop in the
critical current density with magnetic field that is observed in MgB. The
irreversibility field is also found to be rather low, therefore, the pinning
properties of this new material will need to be enhanced for practical
applications.Comment: 11 pages, 6 figures, Revtex forma
Non-thermal origin of nonlinear transport across magnetically induced superconductor-metal-insulator transition
We have studied the effect of perpendicular magnetic fields and temperatures
on the nonlinear electronic transport in amorphous Ta superconducting thin
films. The films exhibit a magnetic field induced metallic behavior intervening
the superconductor-insulator transition in the zero temperature limit. We show
that the nonlinear transport in the superconducting and metallic phase is of
non-thermal origin and accompanies an extraordinarily long voltage response
time.Comment: 5 pages, 4 figure
Quantum Games with Correlated Noise
We analyze quantum game with correlated noise through generalized
quantization scheme. Four different combinations on the basis of entanglement
of initial quantum state and the measurement basis are analyzed. It is shown
that the advantage that a quantum player can get by exploiting quantum
strategies is only valid when both the initial quantum state and the
measurement basis are in entangled form. Furthermore, it is shown that for
maximum correlation the effects of decoherence diminish and it behaves as a
noiseless game.Comment: 12 page
Grain boundary ferromagnetism in vanadium-doped InO thin films
Room temperature ferromagnetism was observed in InO\,^{\circ}{\rm C}_2_3$ host lattice, thus excluding the existence of secondary phases
of vanadium compounds. Magnetic measurements based on SQUID magnetometry and
magnetic circular dichroism confirm that the magnetism is at grain boundaries
and also in the grains. The overall magnetization originates from the competing
effects between grains and grain boundaries.Comment: 12 pages, 7 figures, 1 table, accepted by Europhysics Letter
Development of a new machine system for the forming of micro-sheet-products
Most of the developed micro-forming machines were based on standalone concepts which do not support efficient integration to make them fully automated and integrated. At present, material feeding in micro-forming is not of sufficient precision and reliability for high throughput manufacturing applications. Precise feeding is necessary to ensure that micro-parts can be produced with sufficient accuracy, especially in multi-stage forming, while high-speed feeding is a must to meet the production-rate requirements. Therefore, design of a new high-precision and high-speed feeder for micro-forming is proposed. Several possible approaches are examined with a view to establishing feasible concepts. Based on the investigation, several concepts for thin sheet-metal feeding for micro-forming are generated, they being argued and assessed with applicable loads and forces analysis. These form a basis of designing a new feeder
- …