41 research outputs found

    Dicylopenta­dien­yl[4-(4-vinyl­benz­yloxy)pyridine-2,6-dicarboxyl­ato]titanium(IV) monohydrate

    Get PDF
    The title compound, [Ti(C5H5)2(C16H11NO5)]·H2O, exhibits a titanocene unit coordinated to a styrene-substituted pyridine-2,6-dicarboxyl­ate ligand synthesized for use as a monomer for polymerization or copolymerization yielding metallocene-containing polymers. The compound crystallized as a monohydrate and the solvent water mol­ecule forms strong O—H⋯O hydrogen bonds with the carboxyl­ate O atoms of the Ti complex, which play an important role in the connection of adjacent mol­ecules. In addition, weak inter­molecular C—H⋯O hydrogen bonds also contribute to the crystal packing arrangement

    Real-Time Cost Optimization Approach Based on Deep Reinforcement Learning in Software-Defined Security Middle Platform

    No full text
    In today’s business environment, reducing costs is crucial due to the variety of Internet of Things (IoT) devices and security infrastructure. However, applying security measures to complex business scenarios can lead to performance degradation, making it a challenging task. To overcome this problem, we propose a novel algorithm based on deep reinforcement learning (DRL) for optimizing cost in multi-party computation software-defined security middle platforms (MPC-SDSmp) in real-time. To accomplish this, we first integrate fragmented security requirements and infrastructure into the MPC-SDSmp cloud model with privacy protection capabilities to reduce deployment costs. By leveraging the power of DRL and cloud computing technology, we enhance the real-time matching and dynamic adaptation capabilities of the security middle platform (Smp). This enables us to generate a real-time scheduling strategy for Smp resources that meet low-cost goals to reduce operating costs. Our experimental results demonstrate that the proposed method not only reduces the costs by 13.6% but also ensures load balancing, improves the quality-of-service (QoS) satisfaction by 18.7%, and reduces the average response time by 34.2%. Moreover, our solution is highly robust and better suited for real-time environments compared to the existing methods

    Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Get PDF
    Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers

    Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China

    No full text
    Industrialization and urbanization have led to continuous urban development. The rapid change in land-use type and extent has a significant impact on the capacity of ecosystem services. Changes in the landscape pattern of roads, rivers, railway stations, and expressway entrances and exits have evident geographical proximity effects. We used landscape pattern indices and ecosystem service value (ESV) to evaluate the landscape pattern and ESV spatial differentiation of the Pearl River Delta region and its typical transportation infrastructure and rivers in 1990, 2000, and 2017. The results show that rapid urbanization and industrialization have led to changes in urban land use along the Pearl River Estuary. Urban land changes on the east bank of the Pearl River are greater than urban land changes on the west bank of the Pearl River; the landscape diversity of the Pearl River Delta has increased, the connectivity of the landscape has decreased, and the degree of fragmentation has increased. Second, the city size of the Pearl River Delta was negatively correlated with the ESVs. The ESVs in the core areas of the Pearl River Delta urban agglomeration were smaller than those in the fringe areas. With the gradient change in urban land use, ESVs showed a growing trend from the city center to the surrounding areas. The key areas for ecological protection and restoration should be central urban areas and suburbs. Third, the siphoning effect of the buffer zones of railway stations and expressway entrances and exits was very strong and drove the development and utilization of the surrounding land. As the degree of land development in the buffer zone decreased, the ESVs increased. Fourth, different grades of roads in the Pearl River Delta had different impacts on the regional landscape and ESVs. County roads had a greater interference effect than expressways, national roads, and provincial roads, and the riverside plains of the Pearl River Delta have a large development space, low urban development costs, and multiple land-use activities that have profoundly changed the landscape of the river buffer zone

    Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China

    No full text
    Industrialization and urbanization have led to continuous urban development. The rapid change in land-use type and extent has a significant impact on the capacity of ecosystem services. Changes in the landscape pattern of roads, rivers, railway stations, and expressway entrances and exits have evident geographical proximity effects. We used landscape pattern indices and ecosystem service value (ESV) to evaluate the landscape pattern and ESV spatial differentiation of the Pearl River Delta region and its typical transportation infrastructure and rivers in 1990, 2000, and 2017. The results show that rapid urbanization and industrialization have led to changes in urban land use along the Pearl River Estuary. Urban land changes on the east bank of the Pearl River are greater than urban land changes on the west bank of the Pearl River; the landscape diversity of the Pearl River Delta has increased, the connectivity of the landscape has decreased, and the degree of fragmentation has increased. Second, the city size of the Pearl River Delta was negatively correlated with the ESVs. The ESVs in the core areas of the Pearl River Delta urban agglomeration were smaller than those in the fringe areas. With the gradient change in urban land use, ESVs showed a growing trend from the city center to the surrounding areas. The key areas for ecological protection and restoration should be central urban areas and suburbs. Third, the siphoning effect of the buffer zones of railway stations and expressway entrances and exits was very strong and drove the development and utilization of the surrounding land. As the degree of land development in the buffer zone decreased, the ESVs increased. Fourth, different grades of roads in the Pearl River Delta had different impacts on the regional landscape and ESVs. County roads had a greater interference effect than expressways, national roads, and provincial roads, and the riverside plains of the Pearl River Delta have a large development space, low urban development costs, and multiple land-use activities that have profoundly changed the landscape of the river buffer zone

    The Effects of Insulin-Like Growth Factor-1 and Basic Fibroblast Growth Factor on the Proliferation of Chondrocytes Embedded in the Collagen Gel Using an Integrated Microfluidic Device

    No full text
    This work presents an integrated microfluidic device on which the proliferation of rabbit chondrocytes was investigated in the presence of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (bFGF), and their combinations. The microfluidic device was mainly composed of an upstream concentration gradient generator and a downstream perfusion-based three-dimensional cell culture module. The rabbit articular chondrocytes were cultured for 2 weeks at the different concentrations of growth factors generated by concentration gradient generator. IGF-1, up to 57.14 ng/mL, had the ability to promote the proliferation of chondrocytes in a dose-dependent manner, and there were no further promotions at higher concentrations. bFGF increased chondrocyte proliferation dose dependently up to 5.72 ng/mL, and then the proliferation rate decreased when the concentration was increased. The combination of IGF-1 and bFGF could synergistically promote the proliferation, and the group of 85.73 ng/mL IGF-1 and 1.43 ng/mL bFGF presented an optimal effect (up to 4.76-fold), which had statistically significant differences compared with IGF-1 and bFGF, respectively. Moreover, the proliferation test using the conventional method was performed simultaneously and revealed similar results. The results obtained in this study demonstrated that the microfluidic device is an effective platform for cartilage tissue engineering. With this device, experimental conditions are flexible and can be optimized by changing either the category of growth factors or the concentration of input growth factor. Further, the small number of cells (1-100) required, with which parallel experiments could be performed simultaneously, makes it an attractive platform for the high-through screening at the cellular level in autologous chondrocyte implantation

    Prediction of switching impulse breakdown voltage of complex gap based on SVM

    No full text
    Complex gaps may be formed when carrying out live working in substations, while the discharge characteristics of complex gaps are different from those of single gaps. This paper focuses on the prediction of critical 50% positive switching impulse breakdown voltage (50,crit+) of phase-to-phase complex gaps formed in 220 kV substations. Firstly, several electric field features were defined on the shortest discharge path of the complex gap to reflect the electric field distribution. Then support vector machine (SVM) prediction models were established according to the connection between electric field distribution and breakdown voltage. Finally, the 50,crit+ data of the complex gap were obtained through twice electric field calculations and predictions. The prediction results show that the minimum 50,crit+ of phase-to-phase complex gaps is 1147 kV, and the critical position is 0.9 m away from the high voltage conductor, accounting for 27% of the whole gap. Both critical position and voltage are in good agreement with the values provided in IEC 61472

    Wideband Spectrum Sensing Based on Reconfigurable Filter Bank in Cognitive Radio

    No full text
    In order to ease the conflict between the bandwidth demand of high-rate wireless communication and the shortage of spectrum resources, a wideband spectrum sensing method based on reconfigurable filter bank (RFB) with adjustable resolution is presented. The wideband signals are uniformly divided into multi-narrowband signals by RFB, which is designed by polyphase uniform Discrete Fourier Transform (DFT) modulation, and each sub-band is sensed by energy detection. According to the idle proportion of detected sub-bands, the number of RFB sub-bands is reset in next spectrum-sensing time. By simulating with collected wideband dataset, the influence of filter bank sub-bands number and idle state proportion on the sensing results is analyzed, and then on the basis of the trade-off between spectrum-sensing resolution and computational complexity, the optimal sub-bands number of filter bank is selected, so as to improve the detection performance and save resources
    corecore