58 research outputs found

    Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    Get PDF
    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In addition to prospective analysis for standards and certification, urban form modeling can also be useful in calculating or verifying ex post facto, bottom-up carbon emissions inventories. Emissions inventories provide a benchmark for evaluating future outcomes and scenarios as well as an empirical basis for valuing low-carbon technologies. By highlighting the embodied energy and emissions of building materials, the LCA approach can also be used to identify the most intensive aspects of industrial production and the supply chain. The agent based modeling aspect of the model can be useful for understanding how policy incentives can impact individual behavior and the aggregate effects thereof. The most useful elaboration of the urban form assessment model would be to further generalize it for comparative analysis. Scenario analysis could be used for benchmarking and identification of policy priorities. If the model is to be used for inventories, it is important to disaggregate the energy use data for more accurate emissions modeling. Depending on the policy integration of the model, it may be useful to incorporate occupancy data for per-capita results. On the question of density and efficiency, it may also be useful to integrate a more explicit spatial scaling mechanism for modeling neighborhood and city-level energy use and emissions, i.e. to account for scaling effects in public infrastructure and transportation

    Inventory of China's Energy-Related CO2 Emissions in 2008

    Get PDF
    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respectively. The 2008 emissions estimated for China in this study falls within the range of other international estimates, and suggests that the EIA methodology can be adopted to estimate China's emissions if the proper adjustments are made. While these results are helpful in understanding China's annual emissions, several key areas of data challenges affect the accuracy of this estimate. Industrial process-based emissions - an important source of emissions given China's industry-intensive economy and size of its cement sector - have not been included in this calculation and could be the focus of further model refinement. The accuracy of the Chinese emissions estimate can be further improved by addressing two unreported international bunker categories and developing China-specific carbon sequestration coefficients for non-fuel use energy products

    Using DNA Barcoding to Identify the Genus Lolium

    Get PDF
    Seeds of the genus Lolium are difficult to identify based on morphology for morphological likeness and some physical deformation such as friction and flattening during storage and transport. DNA barcoding, a newly-established method, has been used to discriminate a variety of agricultural crops with its own advantages. In present study, DNA barcodes for the genus Lolium were investigated for the first time. DNA sequences of psbA-trnH, rbcL, atpF-atpH, and the ITS2 region were evaluated for their ability to differentiate Lolium from the related genus Festuca. As confirmed by inter-intraspecific divergence and Kimura 2 parameter analysis, the greatest divergence existed in ITS2, followed by psbA-trnH. On the contrary, rbcL and atpF-atpH possessed poor genetic variation of 0-0.0115, and was relatively difficult in discrimination of genus Lolium. For ITS2 sequence, no inter-intraspecific distance overlaps were observed and each species has a distinct barcoding gap. ITS2 could effectively discriminate all species based on a neighbor-joining tree. Thus, the ITS2 region is a candidate for DNA barcoding of Lolium

    Do climate change policies promote or conflict with subjective wellbeing:A case study of Suzhou, China

    Get PDF
    As public expectations for health rise, health measurements broaden from a focus on death, disease, and disability to wellbeing. However, wellbeing hasn’t been incorporated into the framework of climate change policy decision-making in Chinese cities. Based on survey data (n = 763) from Suzhou, this study used Generalized Estimation Equation approach to model external conditions associated with wellbeing. Then, semi-quantitative analyses were conducted to provide a first indication to whether local climate change policies promote or conflict with wellbeing through altering these conditions. Our findings suggested: (i) Socio-demographic (age, job satisfaction, health), psychosocial (satisfaction with social life, ontological security/resilience) and environmental conditions (distance to busy road, noise annoyance and range hoods in the kitchen) were significantly associated with wellbeing; (ii) None of existing climate change strategies in Suzhou conflict with wellbeing. Three mitigation policies (promotion of tertiary and high–tech industry, increased renewable energy in buildings, and restrictions on car use) and one adaption policy (increasing resilience) brought positive co–benefits for wellbeing, through the availability of high-satisfied jobs, reduced dependence on range hoods, noise reduction, and valuing citizens, respectively. This study also provided implications for other similar Chinese cities that potential consequences of climate change interventions for wellbeing should be considered.</p

    Effects of physical activity on depression, anxiety, and stress in college students: the chain-based mediating role of psychological resilience and coping styles

    Get PDF
    BackgroundPhysical activity can alleviate negative emotions in college students by enhancing mood and cognitive functions. Yet, the mechanisms underlying these benefits remain unclear.PurposeThis study examines the association between physical activity and negative emotions—specifically, depression, anxiety, and stress—in college students. Additionally, we explore the mediating effects of psychological resilience and coping styles to offer theoretical and practical insights for mitigating students’ negative emotions.MethodsUsing a stratified random sampling approach, a total of 1,380 college students, from five universities in Hangzhou, Nanjing, and Wenzhou, were included in the analysis. The survey instruments included the Physical Activity Rating Scale, Connor-Davidson Resilience Scale, Simple Coping Style Scale, and Depression-Anxiety Stress Scale. The data were statistically analyzed using multivariate methods with IBM SPSS 25.0 and the PROCESS V3.3 plug-in.Results(1) College students engage in a low level of physical activity, with male students participating significantly more than female students (p &lt; 0.001). (2) Physical activity was significantly positively correlated with psychological resilience and positive coping styles (t = 9.126, p &lt; 0.001; t = 23.087, p &lt; 0.001) and overall negative correlated with negative emotions in college students (t = −3.601, p &lt; 0.001). (3) Psychological resilience and positive coping styles were found to play a chain mediating role between physical activity and negative emotions. The mediation effect consists of two paths: physical activity → psychological resilience → negative emotions (effect value: −0.0324), and physical activity → psychological resilience → positive coping → negative emotions (effect value: −0.0099). (4) Female students demonstrated higher levels of positive coping (p &lt; 0.001), while male students exhibited more negative emotions (p &lt; 0.001).ConclusionOur study identifies a significant indirect link, mediated by psychological resilience and positive coping styles, between physical activity and the reduction of negative emotions. Targeted interventions addressing gender differences, such as offering special courses and providing specialized exercise programs and emotional management strategies, can enhance psychological resilience and positive coping mechanisms. Consequently, these measures can alleviate the adverse effects of negative emotions. Our findings have broader implications for both research and practical interventions in promoting mental health among college students

    Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner

    Get PDF
    Introduction: Mitochondrial diseases caused by mtDNA have no effective cures. Recently developed DddA-derived cytosine base editors (DdCBEs) have potential therapeutic implications in rescuing the mtDNA mutations. However, the performance of DdCBEs relies on designing different targets or improving combinations of split-DddA halves and orientations, lacking knowledge of predicting the results before its application.Methods: A series of DdCBE pairs for wide ranges of aC or tC targets was constructed, and transfected into Neuro-2a cells. The mutation rate of targets was compared to figure out the potential editing rules.Results: It is found that DdCBEs mediated mtDNA editing is predictable: 1) aC targets have a concentrated editing window for mtDNA editing in comparison with tC targets, which at 5’C8-11 (G1333) and 5’C10-13 (G1397) for aC target, while 5’C4-13 (G1333) and 5’C5-14 (G1397) for tC target with 16bp spacer. 2) G1333 mediated C&gt;T conversion at aC targets in DddA-half-specific manner, while G1333 and G1397 mediated C&gt;T conversion are DddA-half-prefer separately for tC and aC targets. 3) The nucleotide adjacent to the 3’ end of aC motif affects mtDNA editing. Finally, by the guidance of these rules, a cell model harboring a pathogenic mtDNA mutation was constructed with high efficiency and no bystander effects.Discussion: In summary, this discovery helps us conceive the optimal strategy for accurate mtDNA editing, avoiding time- and effort-consuming optimized screening jobs

    Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Get PDF
    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction continues at a rapid pace. Growth in this sector means that commercial lighting and HVAC will play an increasingly important role in energy demand in China. The outlook for efficiency improvement in China is encouraging, since the Chinese national and local governments have implemented significant policies to contain energy intensity and announced their intention to continue and accelerate these. In particular, the Chinese appliance standards program, first established in 1989, was significantly strengthened and modernized after the passage of the Energy Conservation Law of 1997. Since then, the program has expanded to encompass over 30 equipment types (including motor vehicles). The current study suggests that, in spite of these efforts, there is significant savings to be captured through wide adoption of technologies already available on the Chinese market. The approach of the study is to assess the impact of short-term actions on long-term impacts. 'Short-term' market transformation is assumed to occur by 2015, while 'long-term' energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. Early in 2011, the Chinese government announced a plan to reduce carbon dioxide emissions intensity (per unit GDP) by 16% by 2015 as part of the 12th five year plan. These targets are consistent with longer term goals to reduce emissions intensity 40-45% relative to 2005 levels by 2020. The efforts of the 12th FYP focus on short-term gains to meet the four-year targets, and concentrate mainly in industry. Implementation of cost-effective technologies for all new equipment in the buildings sector thus is largely complementary to the 12th FYP goals, and would provide a mechanism to sustain intensity reductions in the medium and long term. The 15-year time frame is significant for many products, in the sense that delay of implementation postpones economic benefits and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets

    Folic acid therapy reduces the first stroke risk associated with hypercholesterolemia among hypertensive patients

    Get PDF
    Background and Purpose - We sought to determine whether folic acid supplementation can independently reduce the risk of first stroke associated with elevated total cholesterol levels in a subanalysis using data from the CSPPT (China Stroke Primary Prevention Trial), a double-blind, randomized controlled trial. Methods - A total of 20 702 hypertensive adults without a history of major cardiovascular disease were randomly assigned to a double-blind daily treatment of an enalapril 10-mg and a folic acid 0.8-mg tablet or an enalapril 10-mg tablet alone. The primary outcome was first stroke. Results - The median treatment duration was 4.5 years. For participants not receiving folic acid treatment (enalapril-only group), high total cholesterol (≥ 200 mg/dL) was an independent predictor of first stroke when compared with low total cholesterol (\u3c200 mg/dL; 4.0% versus 2.6%; hazard ratio, 1.52; 95% confidence interval, 1.18-1.97; P=0.001). Folic acid supplementation significantly reduced the risk of first s roke among participants with high total cholesterol (4.0% in the enalapril-only group versus 2.7% in the enalapril-folic acid group; hazard ratio, 0.69; 95% confidence interval, 0.56-0.84 P\u3c0.001; number needed to treat, 78; 95% confidence interval, 52-158), independent of baseline folate levels and other important covariates. By contrast, among participants with low total cholesterol, the risk of stroke was 2.6% in the enalapril-only group versus 2.5% in the enalapril-folic acid group (hazard ratio, 1.00; 95% confidence interval, 0.75-1.30; P=0.982). The effect was greater among participants with elevated total cholesterol (P for interaction=0.024). Conclusions - Elevated total cholesterol levels may modify the benefits of folic acid therapy on first stroke. Folic acid supplementation reduced the risk of first stroke associated with elevated total cholesterol by 31% among hypertensive adults without a history of major cardiovascular diseases

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore