12,377 research outputs found
Doppler effect of gamma-ray bursts in the fireball framework
The influence of the Doppler effect in the fireball framework on the spectrum
of gamma-ray bursts is investigated. The study shows that the shape of the
expected spectrum of an expanding fireball remains almost the same as that of
the corresponding rest frame spectrum for constant radiations of the
bremsstrahlung, Comptonized, and synchrotron mechanisms as well as for that of
the GRB model. The peak flux spectrum and the peak frequency are obviously
correlated. When the value of the Lorentz factor becomes 10 times larger, the
flux of fireballs would be several orders of magnitude larger. The expansion
speed of fireballs is a fundamental factor of the enhancement of the flux of
gamma-ray bursts.Comment: 19 pages, 13 figure
Randomized Algorithms for Tracking Distributed Count, Frequencies, and Ranks
We show that randomization can lead to significant improvements for a few
fundamental problems in distributed tracking. Our basis is the {\em
count-tracking} problem, where there are players, each holding a counter
that gets incremented over time, and the goal is to track an
\eps-approximation of their sum continuously at all times,
using minimum communication. While the deterministic communication complexity
of the problem is \Theta(k/\eps \cdot \log N), where is the final value
of when the tracking finishes, we show that with randomization, the
communication cost can be reduced to \Theta(\sqrt{k}/\eps \cdot \log N). Our
algorithm is simple and uses only O(1) space at each player, while the lower
bound holds even assuming each player has infinite computing power. Then, we
extend our techniques to two related distributed tracking problems: {\em
frequency-tracking} and {\em rank-tracking}, and obtain similar improvements
over previous deterministic algorithms. Both problems are of central importance
in large data monitoring and analysis, and have been extensively studied in the
literature.Comment: 19 pages, 1 figur
- …