44,735 research outputs found

    Generative Cooperative Net for Image Generation and Data Augmentation

    Full text link
    How to build a good model for image generation given an abstract concept is a fundamental problem in computer vision. In this paper, we explore a generative model for the task of generating unseen images with desired features. We propose the Generative Cooperative Net (GCN) for image generation. The idea is similar to generative adversarial networks except that the generators and discriminators are trained to work accordingly. Our experiments on hand-written digit generation and facial expression generation show that GCN's two cooperative counterparts (the generator and the classifier) can work together nicely and achieve promising results. We also discovered a usage of such generative model as an data-augmentation tool. Our experiment of applying this method on a recognition task shows that it is very effective comparing to other existing methods. It is easy to set up and could help generate a very large synthesized dataset.Comment: 12 pages, 8 figure

    Diversifying Top-K Results

    Full text link
    Top-k query processing finds a list of k results that have largest scores w.r.t the user given query, with the assumption that all the k results are independent to each other. In practice, some of the top-k results returned can be very similar to each other. As a result some of the top-k results returned are redundant. In the literature, diversified top-k search has been studied to return k results that take both score and diversity into consideration. Most existing solutions on diversified top-k search assume that scores of all the search results are given, and some works solve the diversity problem on a specific problem and can hardly be extended to general cases. In this paper, we study the diversified top-k search problem. We define a general diversified top-k search problem that only considers the similarity of the search results themselves. We propose a framework, such that most existing solutions for top-k query processing can be extended easily to handle diversified top-k search, by simply applying three new functions, a sufficient stop condition sufficient(), a necessary stop condition necessary(), and an algorithm for diversified top-k search on the current set of generated results, div-search-current(). We propose three new algorithms, namely, div-astar, div-dp, and div-cut to solve the div-search-current() problem. div-astar is an A* based algorithm, div-dp is an algorithm that decomposes the results into components which are searched using div-astar independently and combined using dynamic programming. div-cut further decomposes the current set of generated results using cut points and combines the results using sophisticated operations. We conducted extensive performance studies using two real datasets, enwiki and reuters. Our div-cut algorithm finds the optimal solution for diversified top-k search problem in seconds even for k as large as 2,000.Comment: VLDB201
    • …
    corecore