50 research outputs found

    Lack of association between the CALM1 core promoter polymorphism (-16C/T) and susceptibility to knee osteoarthritis in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>CALM1 </it>gene encodes calmodulin (CaM), an important and ubiquitous eukaryotic Ca<sup>2+</sup>-binding protein. Several studies have indicated that a deficient CaM function is likely to be involved in the pathogenesis of osteoarthritis (OA). Using a convincing genome-wide association study, a Japanese group has recently demonstrated a genetic association between the <it>CALM1 </it>core promoter polymorphism (-16C/T transition SNP, rs12885713) and OA susceptibility. However, the subsequent association studies failed to provide consistent results in OA patients of differently selected populations. The present study is to evaluate the association of the -16C/T polymorphism with knee OA in a Chinese Han population.</p> <p>Methods</p> <p>A case-control association study was conducted. The polymorphism was genotyped in 183 patients who had primary symptomatic knee OA with radiographic confirmation and in 210 matched controls. Allelic and genotypic frequencies were compared between patients and control subjects.</p> <p>Results</p> <p>No significant difference was detected in genotype or allele distribution between knee OA and control groups (all <it>P </it>> 0.05). The association was also negative even after stratification by sex. Furthermore, no association between the -16C/T SNP genotype and the clinical variables age, sex, BMI (body mass index) and K/L (Kellgren/Lawrence) score was observed in OA patients.</p> <p>Conclusion</p> <p>The present study suggests that the CALM1 core promoter polymorphism -16C/T is not a risk factor for knee OA susceptibility in the Chinese Han population. Further studies are needed to give a global view of this polymorphism in pathogenesis of OA.</p

    Disrupted neural variability during propofol‐induced sedation and unconsciousness

    Full text link
    Variability quenching is a widespread neural phenomenon in which trial‐to‐trial variability (TTV) of neural activity is reduced by repeated presentations of a sensory stimulus. However, its neural mechanism and functional significance remain poorly understood. Recurrent network dynamics are suggested as a candidate mechanism of TTV, and they play a key role in consciousness. We thus asked whether the variability‐quenching phenomenon is related to the level of consciousness. We hypothesized that TTV reduction would be compromised during reduced level of consciousness by propofol anesthetics. We recorded functional magnetic resonance imaging signals of resting‐state and stimulus‐induced activities in three conditions: wakefulness, sedation, and unconsciousness (i.e., deep anesthesia). We measured the average (trial‐to‐trial mean, TTM) and variability (TTV) of auditory stimulus‐induced activity under the three conditions. We also examined another form of neural variability (temporal variability, TV), which quantifies the overall dynamic range of ongoing neural activity across time, during both the resting‐state and the task. We found that (a) TTM deceased gradually from wakefulness through sedation to anesthesia, (b) stimulus‐induced TTV reduction normally seen during wakefulness was abolished during both sedation and anesthesia, and (c) TV increased in the task state as compared to resting‐state during both wakefulness and sedation, but not anesthesia. Together, our results reveal distinct effects of propofol on the two forms of neural variability (TTV and TV). They imply that the anesthetic disrupts recurrent network dynamics, thus prevents the stabilization of cortical activity states. These findings shed new light on the temporal dynamics of neuronal variability and its alteration during anesthetic‐induced unconsciousness.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146388/1/hbm24304_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146388/2/hbm24304.pd

    A 3D-Printed Scaffold for Repairing Bone Defects

    No full text
    The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds

    Genetic polymorphism of NOS3 with susceptibility to deep vein thrombosis after orthopedic surgery: a case-control study in Chinese Han population.

    Get PDF
    Deep vein thrombosis is one of the common complications of orthopedic surgery. Studies indicated that genetic factors played a considerable role in the pathogenesis of deep vein thrombosis. Endothelial nitric oxide synthase which encoded by nitric oxide synthase 3 (NOS3), can generate nitric oxide in endothelial cells. As a predominant regulator for vascular homeostasis, nitric oxide might be involved in the pathogenesis of thrombosis. It had been proved that the NOS3 polymorphism (rs1799983) was associated with the development of cardiovascular diseases. Our objective was to evaluate the association between the NOS3 polymorphism (rs1799983) and deep vein thrombosis after orthopedic surgery in Chinese Han population. The polymorphism was genotyped in 224 subjects with deep vein thrombosis after orthopedic surgery and 580 controls. Allele and genotype frequencies were compared between subjects with deep vein thrombosis and control subjects. The allele and genotype frequencies of the NOS3 polymorphism (rs1799983) were significantly different between subjects with deep vein thrombosis and control subjects. There were also significant differences when the subjects were stratified by gender, surgery type and hypertension status. These findings suggested that the NOS3 polymorphism (rs1799983) was associated with susceptibility to the deep vein thrombosis after orthopedic surgery in Chinese Han population, and NOS3 might play a role in the development of deep vein thrombosis after orthopedic surgery

    Evaluation of the Effect of the Sulcus Angle and Lateral to Medial Facet Ratio of the Patellar Groove on Patella Tracking in Aging Subjects with Stable Knee Joint

    No full text
    Purpose. To determine whether the sulcus angle and the lateral to medial facet ratio correlate with patella lateral displacement and tilt in patients without patella instability. Methods. Computed tomography images of the lower limb of 64 patients without known arthropathy were collected. Three-dimensional models of the lower limb with a unified coordinate system were rebuilt by using Mimics software. The sulcus angle, lateral to medial facet ratio, lateral trochlear inclination of the patellar groove, tibial tuberosity-trochlear groove (TT-TG) distance, bisect offset index, and lateral tilt of the patella were measured. Pearson’s correlation test was used to determine the relationship between the aforementioned parameters. Results. Data from 51 patients were analyzed. The sulcus angle was negatively correlated with lateral tilt inclination (p<0.001, r=0.8406) and positively correlated with the bisect offset index (p=0.003, r=0.634) and patellar tilt (p=0.03, r=0.551); the lateral to medial facet ratio was positively correlated with TT-TG distance (p=0.003, r=0.643) and bisect offset index (p=0.026, r=0.559). Conclusion. The sulcus angle and lateral to medial facet ratio of the patellar groove can influence patella tracking in patients with stable knee joints

    Arthroscopic Management for the Unstable Inferior Leaf of the Lateral Meniscus Anterior Horn and Associated Cysts through a Direct Inframeniscal Portal: A Retrospective Study

    No full text
    Introduction. To investigate the clinical results of arthroscopic management for the unstable inferior leaf of the lateral meniscus anterior horn and associated cysts through an inframeniscal portal. Methods. From March 2005 to October 2014, 64 patients with an unstable inferior leaf of the lateral meniscus anterior horn and associated cysts underwent arthroscopic management with an inframeniscal portal. The mean age of the patients was 36.9 years (range, 18 to 49 years). The mean follow-up period was 28 months (range, 24 to 44 months). Clinical results were assessed using physical examination, the Lysholm knee score, and postoperative magnetic resonance scanning. Results. The median Lysholm score improved significantly at 1 year after surgery and at final follow-up. Magnetic resonance scanning at least one year after the operation revealed no recurrent meniscal tears or cysts. No reoperations were required after an average follow-up of 28 months. All patients reported significant symptomatic relief after the operation. They had full range of motion at three months and returned to normal activities and sports one year after surgery. Conclusion. The direct inframeniscal portal can provide an effective approach to manage lesions in the anterior horn of the lateral meniscus with predictable clinical outcomes

    A Transportation Network Optimization Model for Livestock Manure under Different Terrains Considering Economic and Environmental Benefits

    No full text
    Optimizing the path of livestock manure used for farmland is a hugely significant issue, which not only improves the utilization efficiency of manure but also reduces the cost of the transportation of manure. However, some factors such as different terrains and the density of surrounding farmland may lead to more difficulty in further improving the resource utilization rate. Therefore, this paper aims to establish a transport network optimization model for a complex livestock manure distribution scheme. Using basic information from livestock and poultry farms, cultivated land, water areas and forestland in Xinzhou District, Wuhan City, Hubei Province, the relationship between farmland and livestock farms is divided into farm-intensive and water-intensive farmland areas by using the Voronoi diagram subdivision method. Then, according to the supply&ndash;demand balance of manure and crop demand, an optimization model is proposed to discuss the manure return scheme for these two types of terrain. The results show that our model can help significantly improve manure utilization efficiency under different terrain situations, which is proposed comprehensively, considering the economic and environmental benefits

    Efficient oil/water separation membrane derived from super-flexible and superhydrophilic core–shell organic/inorganic nanofibrous architectures

    No full text
    To address the worldwide oil and water separation issue, a novel approach was inspired by natural phenomena to synthesize superhydrophilic and underwater superoleophobic organic/inorganic nanofibrous membranes via a scale up fabrication approach. The synthesized membranes possess a delicate organic core of PVDF-HFP and an inorganic shell of a CuO nanosheet structure, which endows super-flexible properties owing to the merits of PVDF-HFP backbones, and superhydrophilic functions contributed by the extremely rough surface of a CuO nanosheet anchored on flexible PVDF-HFP. Such an organic core and inorganic shell architecture not only functionalizes membrane performance in terms of antifouling, high flux, and low energy consumption, but also extends the lifespan by enhancing its mechanical strength and alkaline resistance to broaden its applicability. The resultant membrane exhibits good oil/water separation efficiency higher than 99.7%, as well as excellent anti-fouling properties for various oil/water mixtures. Considering the intrinsic structural innovation and its integrated advantages, this core–shell nanofibrous membrane is believed to be promising for oil/water separation, and this facile approach is also easy for scaled up manufacturing of functional organic/inorganic nanofibrous membranes with insightful benefits for industrial wastewater treatment, sensors, energy production, and many other related areas.Published versio
    corecore