195 research outputs found
Influence of Salvia miltiorrhizae on the Mesenteric Lymph Node of Rats with Severe Acute Pancreatitis or Obstructive Jaundice
Objective. To observe the effect of salvia miltiorrhizae injection on inflammatory mediator levels and mesenteric lymph nodes in severe acute pancreatitis (SAP) and obstructive jaundice (OJ) rats and explore the protective mechanism of salvia miltiorrhizae on the lymph nodes of these rats. Methods. A total of 288 rats were used in SAP-associated and OJ-associated experiments. The rats were randomly divided into sham-operated group, model control group, and treated group. At various time points after operation, the pathological changes in mesenteric lymph nodes of rats in each group were observed, respectively. Results. The pathological severity scores in lymph nodes of SAP rats in treated group were significantly lower than those in model control group (P < .05) while the pathological changes in lymph nodes of OJ rats in treated group also showed varying degrees of mitigation. Conclusion. Salvia miltiorrhizae can exert protective effects on the lymph nodes of SAP or OJ rats via a mechanism that is associated with reducing the contents of inflammatory mediators in blood
Delineating urban functional zones using mobile phone data: A case study of cross-boundary integration in Shenzhen-Dongguan-Huizhou area
As cities continuously expand and with the emergence of mega-city regions, the urban functional zones (UFZs) have spread beyond their original administrative boundaries. An accurate and updated delineation of the UFZs is crucial for assessing the functional integration between cities within a mega-city region. Mobility data provides a chance to depict the UFZs from actual human activities at a finer spatial scale. Existing studies mostly adopted network-based approaches relying on the topological relationship but ignoring spatial factors, causing the lack of sensitivity in detecting the cross-cities integration of the functional region. This research proposed a novel regionalisation algorithm that redraws non-overlap boundaries of urban functional zones based on the commuting origin-destination matrix, representing the spatial interactions within cities and cross-cities. In particular, functional zones are drawn by searching for the best partition with the best goodness of fitting in the hierarchical spatial interaction model. The algorithm was applied to a case study of a mega-city region, Shenzhen-Dongguan-Huizhou (SDH) area in China using mobile phone signalling data. By adopting two different settings, this model evaluated the current status and predict the future trend of urban integration respectively. The results show the current boundary of UFZs in the SDH area almost coincides with administrative boundaries. Meanwhile, the results of long-term predictions might be utilised by policymakers to give more attention to the areas near the Dongguan-Huizhou boundary to promote industry cooperation and avoid mismatches between the functional and administrative regions
A New Characteristic Nonconforming Mixed Finite Element Scheme for Convection-Dominated Diffusion Problem
A characteristic nonconforming mixed finite element method (MFEM) is proposed for the convection-dominated diffusion problem based on a new mixed variational formulation. The optimal order error estimates for both the original variable u and the auxiliary
variable σ with respect to the space are obtained by employing some typical characters of the interpolation operator instead of the mixed (or expanded mixed) elliptic projection which is an indispensable tool in the traditional MFEM analysis. At last, we give some numerical results
to confirm the theoretical analysis
Magnon-Phonon coupling in FeGeTe
We study the dynamic coupling of magnons and phonons in single crystals of
Fe3GeTe2 (FGT) using inelastic scanning tunneling spectroscopy (ISTS) with an
ultra-low temperature scanning tunneling microscope. Inelastic scattering of
hot carriers off phonons or magnons has been widely studied using ISTS, and we
use it to demonstrate strong magnon-phonon coupling in FGT. We show a strong
interaction between magnons and acoustic phonons which leads to formation of
van Hove singularities originating in avoided level crossings and hybridization
between the magnonic and phononic bands in this material. We identify these
additional hybridization points in experiments and compare their energy with
density functional theory calculations. Our findings provide a platform for
designing the properties of dynamic magnon-phonon coupling in two-dimensional
materials.Comment: 6 pages, 3 figure
Experiments on bright field and dark field high energy electron imaging with thick target material
Using a high energy electron beam for the imaging of high density matter with
both high spatial-temporal and areal density resolution under extreme states of
temperature and pressure is one of the critical challenges in high energy
density physics . When a charged particle beam passes through an opaque target,
the beam will be scattered with a distribution that depends on the thickness of
the material. By collecting the scattered beam either near or off axis,
so-called bright field or dark field images can be obtained. Here we report on
an electron radiography experiment using 45 MeV electrons from an S-band
photo-injector, where scattered electrons, after interacting with a sample, are
collected and imaged by a quadrupole imaging system. We achieved a few
micrometers (about 4 micrometers) spatial resolution and about 10 micrometers
thickness resolution for a silicon target of 300-600 micron thickness. With
addition of dark field images that are captured by selecting electrons with
large scattering angle, we show that more useful information in determining
external details such as outlines, boundaries and defects can be obtained.Comment: 7pages, 7 figure
- …