24 research outputs found

    Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle

    Get PDF
    Powdery mildew is a widespread plant disease caused by obligate biotrophic fungal pathogens involving species-specific interactions between host and parasite. To gain genomic insights into the underlying obligate biotrophic mechanisms, we analyzed 15 microbial genomes covering powdery and downy mildews and rusts. We observed a genome-wide, massive contraction of multiple gene families in powdery mildews, such as enzymes in the carbohydrate metabolism pathway, when compared with ascomycete phytopathogens, while the fatty acid metabolism pathway maintained its integrity. We also observed significant differences in candidate secreted effector protein (CSEP) families between monocot and dicot powdery mildews, perhaps due to different selection forces. While CSEPs in monocot mildews are likely subject to positive selection causing rapid expansion, CSEP families in dicot mildews are shrinking under strong purifying selection. Our results not only illustrate obligate biotrophic mechanisms of powdery mildews driven by gene family evolution in nutrient metabolism, but also demonstrate how the divergence of CSEPs between monocot and dicot lineages might contribute to species-specific adaption

    Polymer nanofiber reinforced double network gel composites: strong, tough and transparent

    No full text
    Double network gel is well known for its extraordinarily high toughness and stretchability. However, compared to natural rubber and many soft biological tissues such as articular cartilage and tendon, both strength and stiffness of double network gel are significantly lower, which greatly limits its further applications. In this article, to improve mechanical properties of double network gel, we embed a small percentage of aligned electrospun polymer nanofibers into double network gel matrix to make a sandwich-like double network gel composite. Mechanical tests conducted by us show that polymer nanofiber reinforced double network gel composite have much higher strength and stiffness, while maintaining its good transparency

    Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds

    No full text
    A liquid crystal elastomer (LCE) can be regarded as an integration of mesogenic molecules into a polymer network. The LCE can generate large mechanical actuation when subjected to various external stimuli. Recently, it has been extensively explored to make artificial muscle and multifunctional devices. However, in the commonly adopted two-step crosslinking method for synthesizing monodomain LCEs, the LCE needs to be well-cross-linked in the first step before stretching, which increases the disorder of mesogenic molecules in the final state of the LCE and makes it very challenging to fabricate the LCE of complex shapes. In this article, we developed a new LCE with disulfide bonds, which can be reprogrammed from the polydomain state to the monodomain state either through heating or UV illumination, owing to the rearrangement of the polymer network induced by the metathesis reaction of disulfide bonds. In addition, the newly developed LCE can be easily reprocessed and self-healed by heating. Because of the excellent reprogrammability as well as reprocessability of the LCE, we further fabricated LCE-based active micropillar arrays through robust imprint lithography, which can be hardly achieved using the LCE prepared previously. Finally, we showed an excellent long-term durability of the newly developed LCE

    Temporal and spatial variation of soil moisture of small watershed in gully catchment of the Loess Plateau of China

    No full text
    The temporal and spatial variation characteristics of soil moisture in typical slope and gully of Jiulongquangou small watershed were studied in the hilly and gully region of the Loess Plateau of China. The variation of soil moisture in the 0-30 cm layer on the surface of the hilly and gully region of the Loess Plateau is greater than the variation of soil moisture in each layer between 40 and 100 cm. In the study area, the model parameters such as coefficient of variation (Cv), nugget (C0), sill (C0+C), spatial degrees of freedom(C0/(C+C0)) and variable change can be used to quantitative analysis the spatial varying law. On the slope surface, the average soil water content and the coefficient of variation are negatively correlated, and can be approximated by an exponential function, while the two are positively correlated in the gully

    Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display

    No full text
    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew
    corecore