48 research outputs found

    ControlLLM: Augment Language Models with Tools by Searching on Graphs

    Full text link
    We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving complex real-world tasks. Despite the remarkable performance of LLMs, they still struggle with tool invocation due to ambiguous user prompts, inaccurate tool selection and parameterization, and inefficient tool scheduling. To overcome these challenges, our framework comprises three key components: (1) a \textit{task decomposer} that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a \textit{Thoughts-on-Graph (ToG) paradigm} that searches the optimal solution path on a pre-built tool graph, which specifies the parameter and dependency relations among different tools; and (3) an \textit{execution engine with a rich toolbox} that interprets the solution path and runs the tools efficiently on different computational devices. We evaluate our framework on diverse tasks involving image, audio, and video processing, demonstrating its superior accuracy, efficiency, and versatility compared to existing methods. The code is at https://github.com/OpenGVLab/ControlLLM.Comment: 24 pages, 9 figures, 12 table

    Laparoscopic Surgery for Focal-Form Congenital Hyperinsulinism Located in Pancreatic Head

    Get PDF
    Background and AimsCongenital hyperinsulinism of infancy (CHI) is a rare condition that may cause irreversible severe neurological damage in infants. For children in whom medical management fails, partial or near-total pancreatectomy is then required according to the type of lesion. Currently, open surgery of near-total pancreatic head resection is a mature technique for the treatment of focal-form CHI located in the head of the pancreas, but a minimally invasive laparoscopic procedure has not been reported yet. The aim of this study was to verify the feasibility, safety, and efficacy of laparoscopic pancreatic head resection and Roux-en-Y pancreaticojejunostomy for focal-form CHI.MethodsTwo infants with persistent hypoglycemia and increased insulin levels were diagnosed with CHI and underwent laparoscopic near-total pancreatic head resection due to a suboptimal response to medical therapy and the likelihood of focal disease amenable to surgery. Clinical records, operative findings, and postoperative follow-up were collected and analyzed.ResultsThe operative duration was 300–330 min, and the intraoperative blood loss was minimal. The duration of postoperative abdominal drainage was 4–5 days. Neither intra- nor postoperative abdominal complications occurred. Oral feeding was resumed 3–4 days after the operation, and the blood glucose level was gradually stabilized to within the normal range. Normal blood glucose was observed in both patients over a follow-up period of 3–6 months.ConclusionsLaparoscopic pancreatic head resection and Roux-en-Y pancreaticojejunostomy can be considered a safe and effective procedure with minimal morbidity and excellent outcomes for the treatment of focal CHI in the head of the pancreas

    Berberine Radiosensitizes Human Esophageal Cancer Cells by Downregulating Homologous Recombination Repair Protein RAD51

    Get PDF
    Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells. by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance.Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored

    Suspended Silicon Waveguide with Sub-Wavelength Grating Cladding for Optical MEMS in Mid-Infrared

    No full text
    Mid-infrared (MIR) photonics are generating considerable interest because of the potential applications in spectroscopic sensing, thermal imaging, and remote sensing. Silicon photonics is believed to be a promising solution to realize MIR photonic integrated circuits (PICs). The past decade has seen a huge growth in MIR PIC building blocks. However, there is still a need for the development of MIR reconfigurable photonics to enable powerful on-chip optical systems and new functionalities. In this paper, we present an MIR (3.7~4.1 μm wavelength range) MEMS reconfiguration approach using the suspended silicon waveguide platform on the silicon-on-insulator. With the sub-wavelength grating claddings, the photonic waveguide can be well integrated with the MEMS actuator, thus offering low-loss, energy-efficient, and effective reconfiguration. We present a simulation study on the waveguide design and depict the MEMS-integration approach. Moreover, we experimentally report the suspended waveguide with propagation loss (−2.9 dB/cm) and bending loss (−0.076 dB each). The suspended waveguide coupler is experimentally investigated. In addition, we validate the proposed optical MEMS approach using a reconfigurable ring resonator design. In conclusion, we experimentally demonstrate the proposed waveguide platform’s capability for MIR MEMS-reconfigurable photonics, which empowers the MIR on-chip optical systems for various applications

    DEVELOPMENT OF MEMS-BASED SILICON PHOTONIC INTEGRATED CIRCUIT FOR IR SENSING APPLICATIONS

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOE

    Applications of Photonic Crystal Nanobeam Cavities for Sensing

    No full text
    In recent years, there has been growing interest in optical sensors based on microcavities due to their advantages of size reduction and enhanced sensing capability. In this paper, we aim to give a comprehensive review of the field of photonic crystal nanobeam cavity-based sensors. The sensing principles and development of applications, such as refractive index sensing, nanoparticle sensing, optomechanical sensing, and temperature sensing, are summarized and highlighted. From the studies reported, it is demonstrated that photonic crystal nanobeam cavities, which provide excellent light confinement capability, ultra-small size, flexible on-chip design, and easy integration, offer promising platforms for a range of sensing applications

    Bi-layered composite gratings with high diffraction efficiency enabled by near-field coupling

    No full text
    10.1364/oe.427660Optics Express291726808-2682
    corecore