332 research outputs found

    Diversity-Aware Meta Visual Prompting

    Full text link
    We present Diversity-Aware Meta Visual Prompting~(DAM-VP), an efficient and effective prompting method for transferring pre-trained models to downstream tasks with frozen backbone. A challenging issue in visual prompting is that image datasets sometimes have a large data diversity whereas a per-dataset generic prompt can hardly handle the complex distribution shift toward the original pretraining data distribution properly. To address this issue, we propose a dataset Diversity-Aware prompting strategy whose initialization is realized by a Meta-prompt. Specifically, we cluster the downstream dataset into small homogeneity subsets in a diversity-adaptive way, with each subset has its own prompt optimized separately. Such a divide-and-conquer design reduces the optimization difficulty greatly and significantly boosts the prompting performance. Furthermore, all the prompts are initialized with a meta-prompt, which is learned across several datasets. It is a bootstrapped paradigm, with the key observation that the prompting knowledge learned from previous datasets could help the prompt to converge faster and perform better on a new dataset. During inference, we dynamically select a proper prompt for each input, based on the feature distance between the input and each subset. Through extensive experiments, our DAM-VP demonstrates superior efficiency and effectiveness, clearly surpassing previous prompting methods in a series of downstream datasets for different pretraining models. Our code is available at: \url{https://github.com/shikiw/DAM-VP}.Comment: CVPR2023, code is available at https://github.com/shikiw/DAM-V

    Optical soliton formation controlled by angle twisting in photonic moir\'e lattices

    Get PDF
    Exploration of the impact of synthetic material landscapes featuring tunable geometrical properties on physical processes is a research direction that is currently of great interest because of the outstanding phenomena that are continually being uncovered. Twistronics and the properties of wave excitations in moir\'e lattices are salient examples. Moir\'e patterns bridge the gap between aperiodic structures and perfect crystals, thus opening the door to the exploration of effects accompanying the transition from commensurate to incommensurate phases. Moir\'e patterns have revealed profound effects in graphene-based systems1,2,3,4,5, they are used to manipulate ultracold atoms6,7 and to create gauge potentials8, and are observed in colloidal clusters9. Recently, it was shown that photonic moir\'e lattices enable observation of the two-dimensional localization-to-delocalization transition of light in purely linear systems10,11. Here, we employ moir\'e lattices optically induced in photorefractive nonlinear media12,13,14 to elucidate the formation of optical solitons under different geometrical conditions controlled by the twisting angle between the constitutive sublattices. We observe the formation of solitons in lattices that smoothly transition from fully periodic geometries to aperiodic ones, with threshold properties that are a pristine direct manifestation of flat-band physics11.Comment: 15 pages, 5 figure

    Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells

    Get PDF
    Wogonin, a flavonoid derived from Scutellaria baicalensis Georgi, has been demonstrated to be highly effective in treating hematologic malignancies. In this study, we investigated the anticancer effects of wogonin on K562 cells, K562 imatinib-resistant cells, and primary patient-derived CML cells. Wogonin up-regulated transcription factor GATA-1 and enhanced binding between GATA-1 and FOG-1, thereby increasing expression of erythroid-differentiation genes. Wogonin also up-regulated the expression of p21 and induced cell cycle arrest. Studies employing benzidine staining and analyses of cell surface markers glycophorin A (GPA) and CD71 indicated that wogonin promoted differentiation of K562, imatinib-resistant K562, and primary patient-derived CML cells. Wogonin also enhanced binding between GATA-1 and MEK, resulting in inhibition of the growth of CML cells. Additionally, in vivo studies showed that wogonin decreased the number of CML cells and prolonged survival of NOD/SCID mice injected with K562 and imatinib-resistant K562 cells. These data suggested that wogonin induces cycle arrest and erythroid differentiation in vitro and inhibits proliferation in vivo

    Two-dimensional Thouless pumping of light in photonic moiré lattices

    Get PDF
    Continuous and quantized transports are profoundly different. The latter is determined by the global rather than local properties of a system, it exhibits unique topological features, and its ubiquitous nature causes its occurrence in many areas of science. Here we report the first observation of fully-two-dimensional Thouless pumping of light by bulk modes in a purpose-designed tilted moiré lattices imprinted in a photorefractive crystal. Pumping in such unconfined system occurs due to the longitudinal adiabatic and periodic modulation of the refractive index. The topological nature of this phenomenon manifests itself in the magnitude and direction of shift of the beam center-of-mass averaged over one pumping cycle. Our experimental results are supported by systematic numerical simulations in the frames of the continuous Schrödinger equation governing propagation of probe light beam in optically-induced photorefractive moiré lattice. Our system affords a powerful platform for the exploration of topological pumping in tunable commensurate and incommensurate geometries.P.W., Q.F., R.P. and F.Y. acknowledge support from the NSFC (No. 91950120), Scientific funding of Shanghai (No.9ZR1424400), and Shanghai Outstanding Academic Leaders Plan (No.20XD1402000). Y.V.K. and L.T. acknowledge support from the Severo Ochoa Excellence Programme (CEX2019-000910-S), Fundacio Privada Cellex, Fundacio Privada Mir-Puig, and CERCA/Generalitat de Catalunya. V.V.K. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contracts PTDC/FIS-OUT/3882/ 2020 and UIDB/00618/2020Peer ReviewedPostprint (published version

    Epidermal growth factor receptor in breast carcinoma: association between gene copy number and mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidermal growth factor receptor (EGFR) is an available target of effective anti-EGFR therapy for human breast cancer. The aim of this study was to assess the presence of EGFR gene amplification and mutations in breast cancer and to analyze the association between the statuses of these two gene alterations.</p> <p>Materials and methods</p> <p>EGFR gene amplification and mutations were investigated in formalin-fixed, paraffin-embedded tissues from 139 Chinese female patients with breast cancer by means of fluorescence in-situ hybridization (FISH) and fluorescently labeled real-time quantitative polymerase chain reaction (RT-PCR), respectively.</p> <p>Results</p> <p>EGFR gene amplification was observed in 46/139 (33.1%) of cases by FISH. Based on RT-PCR, 2/139 (1.4%) samples had EGFR gene mutations. Overall, only 1 (0.7%) of the cases was identified with both whole gene amplification and mutation, and 92 (66.2%) of cases were negative for both. High gene copy numbers of EGFR had significant correlation with the occurrence of EGFR protein expressions (P = 0.002).</p> <p>Conclusion</p> <p>In this study, EGFR mutations were presented in only two samples, indicating that EGFR mutations should not be employed in future trials with anti-EGFR therapies for breast cancer. However, EGFR whole gene amplification is frequently observed in patients with breast cancer. It will be of significant interest to investigate whether EGFR gene copy number is a suitable screening test for EGFR-targeted therapy for breast cancer.</p

    Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota.

    Full text link
    peer reviewedThis study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1β and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman's correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota
    corecore