340 research outputs found

    Secured and Cooperative Publish/Subscribe Scheme in Autonomous Vehicular Networks

    Full text link
    In order to save computing power yet enhance safety, there is a strong intention for autonomous vehicles (AVs) in future to drive collaboratively by sharing sensory data and computing results among neighbors. However, the intense collaborative computing and data transmissions among unknown others will inevitably introduce severe security concerns. Aiming at addressing security concerns in future AVs, in this paper, we develop SPAD, a secured framework to forbid free-riders and {promote trustworthy data dissemination} in collaborative autonomous driving. Specifically, we first introduce a publish/subscribe framework for inter-vehicle data transmissions{. To defend against free-riding attacks,} we formulate the interactions between publisher AVs and subscriber AVs as a vehicular publish/subscribe game, {and incentivize AVs to deliver high-quality data by analyzing the Stackelberg equilibrium of the game. We also design a reputation evaluation mechanism in the game} to identify malicious AVs {in disseminating fake information}. {Furthermore, for} lack of sufficient knowledge on parameters of {the} network model and user cost model {in dynamic game scenarios}, a two-tier reinforcement learning based algorithm with hotbooting is developed to obtain the optimal {strategies of subscriber AVs and publisher AVs with free-rider prevention}. Extensive simulations are conducted, and the results validate that our SPAD can effectively {prevent free-riders and enhance the dependability of disseminated contents,} compared with conventional schemes

    A Machine Learning Method for Predicting Traffic Signal Timing from Probe Vehicle Data

    Full text link
    Traffic signals play an important role in transportation by enabling traffic flow management, and ensuring safety at intersections. In addition, knowing the traffic signal phase and timing data can allow optimal vehicle routing for time and energy efficiency, eco-driving, and the accurate simulation of signalized road networks. In this paper, we present a machine learning (ML) method for estimating traffic signal timing information from vehicle probe data. To the authors best knowledge, very few works have presented ML techniques for determining traffic signal timing parameters from vehicle probe data. In this work, we develop an Extreme Gradient Boosting (XGBoost) model to estimate signal cycle lengths and a neural network model to determine the corresponding red times per phase from probe data. The green times are then be derived from the cycle length and red times. Our results show an error of less than 0.56 sec for cycle length, and red times predictions within 7.2 sec error on average

    Collaborative Honeypot Defense in UAV Networks: A Learning-Based Game Approach

    Full text link
    The proliferation of unmanned aerial vehicles (UAVs) opens up new opportunities for on-demand service provisioning anywhere and anytime, but also exposes UAVs to a variety of cyber threats. Low/medium interaction honeypots offer a promising lightweight defense for actively protecting mobile Internet of things, particularly UAV networks. While previous research has primarily focused on honeypot system design and attack pattern recognition, the incentive issue for motivating UAV's participation (e.g., sharing trapped attack data in honeypots) to collaboratively resist distributed and sophisticated attacks remains unexplored. This paper proposes a novel game-theoretical collaborative defense approach to address optimal, fair, and feasible incentive design, in the presence of network dynamics and UAVs' multi-dimensional private information (e.g., valid defense data (VDD) volume, communication delay, and UAV cost). Specifically, we first develop a honeypot game between UAVs and the network operator under both partial and complete information asymmetry scenarios. The optimal VDD-reward contract design problem with partial information asymmetry is then solved using a contract-theoretic approach that ensures budget feasibility, truthfulness, fairness, and computational efficiency. In addition, under complete information asymmetry, we devise a distributed reinforcement learning algorithm to dynamically design optimal contracts for distinct types of UAVs in the time-varying UAV network. Extensive simulations demonstrate that the proposed scheme can motivate UAV's cooperation in VDD sharing and improve defensive effectiveness, compared with conventional schemes.Comment: Accepted Aug. 28, 2023 by IEEE Transactions on Information Forensics & Security. arXiv admin note: text overlap with arXiv:2209.1381

    Experimental Research on Surge and Stability Enhancement of Centrifugal Compressor

    Get PDF
    Centrifugal compressors are wildly used in many process industries. The stability of centrifugal compressor is one of the most important performances. When the compressor operates at the small volume flow rate, the working conditions of rotating stall and surge will occur, which lead to the unstable condition for centrifugal compressor. The signals of compressor are tested and analyzed when surge condition occurs in this paper. In addition, a new method to improve the compressor stability is proposed. It is called the active control casing treatment (ACCT) system. The flow in the compressor impeller is changed by the ACCT system and the stability of compressor is improved. The experimental researches have been done in this paper. The test results of ACCT system are also discussed in this paper

    Dynamic Performance of Valve in Reciprocating Compressor Used Stepless Capacity Regulation System

    Get PDF
    Capacity regulation system by controlling suction valve is useful for large scale reciprocating compressor in petrochemical engineering field. The dynamic performance of adjustment device influences the stability and accurancy of this system. In this paper, a mathematical model of adjustment device coupled with the motion of suction valve is built, and the dynamic performances of valve plate are simulated. The results show that the displacement of actuator increases with the hydraulic oil pressure until the valve plate is keeped to be opened. The closing process of valve plate is delayed when the hold time of actuator is larger enough. Although the gas flow rate and power consumption of comressor decrease with the relax angle of actuator, the power is also consumed when the gas is not discharged through the discharge valve. The closing time decreases with the reset spring stiffness but increases with the diameter of hydraulic

    XMAM:X-raying Models with A Matrix to Reveal Backdoor Attacks for Federated Learning

    Full text link
    Federated Learning (FL) has received increasing attention due to its privacy protection capability. However, the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks. Former researchers proposed several robust aggregation methods. Unfortunately, many of these aggregation methods are unable to defend against backdoor attacks. What's more, the attackers recently have proposed some hiding methods that further improve backdoor attacks' stealthiness, making all the existing robust aggregation methods fail. To tackle the threat of backdoor attacks, we propose a new aggregation method, X-raying Models with A Matrix (XMAM), to reveal the malicious local model updates submitted by the backdoor attackers. Since we observe that the output of the Softmax layer exhibits distinguishable patterns between malicious and benign updates, we focus on the Softmax layer's output in which the backdoor attackers are difficult to hide their malicious behavior. Specifically, like X-ray examinations, we investigate the local model updates by using a matrix as an input to get their Softmax layer's outputs. Then, we preclude updates whose outputs are abnormal by clustering. Without any training dataset in the server, the extensive evaluations show that our XMAM can effectively distinguish malicious local model updates from benign ones. For instance, when other methods fail to defend against the backdoor attacks at no more than 20% malicious clients, our method can tolerate 45% malicious clients in the black-box mode and about 30% in Projected Gradient Descent (PGD) mode. Besides, under adaptive attacks, the results demonstrate that XMAM can still complete the global model training task even when there are 40% malicious clients. Finally, we analyze our method's screening complexity, and the results show that XMAM is about 10-10000 times faster than the existing methods.Comment: 23 page
    corecore