364 research outputs found
Recommended from our members
Birth Weight, Genetic Susceptibility, and Adulthood Risk of Type 2 Diabetes
OBJECTIVE Both stressful intrauterine milieus and genetic susceptibility have been linked to later-life diabetes risk. The current study aims to examine the interaction between low birth weight, a surrogate measure of stressful intrauterine milieus, and genetic susceptibility in relation to risk of type 2 diabetes in adulthood. RESEARCH DESIGN AND METHODS The analysis included two independent, nested case-control studies of 2,591 type 2 diabetic case subjects and 3,052 healthy control subjects. We developed two genotype scores: an obesity genotype score based on 32 BMI-predisposing variants and a diabetes genotype score based on 35 diabetes-predisposing variants. RESULTS Obesity genotype scores showed a stronger association with type 2 diabetes risk in individuals with low birth weight. In low–birth weight individuals, the multivariable-adjusted odds ratio (OR) was 2.55 (95% CI 1.34–4.84) by comparing extreme quartiles of the obesity genotype score, while the OR was 1.27 (1.04–1.55) among individuals with birth weight >2.5 kg (P for interaction = 0.017). We did not observe significant interaction between diabetes genotype scores and birth weight with regard to risk of type 2 diabetes. In a comparison of extreme quartiles of the diabetes gene score, the multivariable-adjusted OR was 3.80 (1.76–8.24) among individuals with low birth weight and 2.27 (1.82–2.83) among those with high birth weight (P for interaction = 0.16). CONCLUSIONS Our data suggest that low birth weight and genetic susceptibility to obesity may synergistically affect adulthood risk of type 2 diabetes
Recommended from our members
Genetic Predisposition to Dyslipidemia and Type 2 Diabetes Risk in Two Prospective Cohorts
Dyslipidemia has been associated with type 2 diabetes, but it remains unclear whether dyslipidemia plays a causal role in type 2 diabetes. We aimed to examine the association between the genetic predisposition to dyslipdemia and type 2 diabetes risk. The current study included 2,447 patients with type 2 diabetes and 3,052 control participants of European ancestry from the Nurses’ Health Study and the Health Professionals Follow-up Study. Genetic predisposition to dyslipidemia was estimated by three genotype scores of lipids (LDL cholesterol, HDL cholesterol, and triglycerides) on the basis of the established loci for blood lipids. Linear relation analysis indicated that the HDL cholesterol and triglyceride genotype scores, but not the LDL cholesterol genotype score, were linearly related to elevated type 2 diabetes risk. Each point of the HDL cholesterol and triglyceride genotype scores was associated with a 3% (odds ratio [OR] 1.03 [95% CI 1.01–1.04]) and a 2% (1.02 [1.00–1.04]) increased risk of developing type 2 diabetes, respectively. The ORs were 1.39 (1.17–1.65) and 1.19 (1.01–1.41) for type 2 diabetes by comparing extreme quartiles of the HDL cholesterol genotype score and triglyceride genotype score, respectively. In conclusion, genetic predisposition to low HDL cholesterol or high triglycerides is related to elevated type 2 diabetes risk
Recommended from our members
FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial
Recent evidence suggests that the fat mass and obesity-associated gene (FTO) genotype may interact with dietary intakes in relation to adiposity. We tested the effect of FTO variant on weight loss in response to 2-year diet interventions. FTO rs1558902 was genotyped in 742 obese adults who were randomly assigned to one of four diets differing in the proportions of fat, protein, and carbohydrate. Body composition and fat distribution were measured by dual-energy x-ray absorptiometry and computed tomography. We found significant modification effects for intervention varying in dietary protein on 2-year changes in fat-free mass, whole body total percentage of fat mass, total adipose tissue mass, visceral adipose tissue mass, and superficial adipose tissue mass (for all interactions, P < 0.05). Carriers of the risk allele had a greater reduction in weight, body composition, and fat distribution in response to a high-protein diet, whereas an opposite genetic effect was observed on changes in fat distribution in response to a low-protein diet. Likewise, significant interaction patterns also were observed at 6 months. Our data suggest that a high-protein diet may be beneficial for weight loss and improvement of body composition and fat distribution in individuals with the risk allele of the FTO variant rs1558902
Recommended from our members
IRS1 Genotype Modulates Metabolic Syndrome Reversion in Response to 2-Year Weight-Loss Diet Intervention: The POUNDS LOST trial
OBJECTIVE Genetic variants near IRS1 are associated with features of the metabolic syndrome (MetS). We examined whether genetic variants near IRS1 might modulate the effects of diets varying in fat content on the MetS status in a 2-year weight-loss trial. RESEARCH DESIGN AND METHODS Two variants near IRS1, rs1522813 and rs2943641, were genotyped in 738 overweight/obese adults (age 60 ± 9 years; BMI 32.7 ± 3.9 kg/m2) randomly assigned to one of four weight-loss diets (a deficit of 750 kcal/day of caloric intake from baseline) varying in macronutrient contents for 2 years. We compared MetS status of high-fat (40% of caloric intake; n = 370) and low-fat (20% caloric intake; n = 368) diet groups differentiated by genotypes (rs1522813 A-allele carriers and noncarriers and rs2943641T-allele carriers and noncarriers). RESULTS Among rs1522813 A-allele carriers, the reversion rates of the MetS were higher in the high-fat diet group than those in the low-fat diet group over the 2-year intervention (P = 0.002), while no significant difference between diet groups was observed among noncarriers (P = 0.27). The genetic modulation on dietary effect was independent of weight changes. The odds ratio (OR) for the 2-year reversion of the MetS was 2.88 (95% CI 1.25–6.67) comparing the high-fat and low-fat diets among rs1522813 A-allele carriers, while the corresponding OR was 0.83 (0.36–1.92) in noncarriers. The variant rs2943641 was not observed to modulate dietary effects on the MetS status. CONCLUSIONS Our data suggest that high-fat weight-loss diets might be more effective in the management of the MetS compared with low-fat diets among individuals with the A-allele of the rs1522813 variant near IRS1
MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai.
BACKGROUND: Genome-wide association studies (GWAS) in White Europeans have shown that genetic variation rs10830963 in melatonin receptor 1B gene (MTNR1B) is associated with fasting glucose and type 2 diabetes, which has also been replicated in several Asian populations. As a variant in the gene involved in the regulation of circadian rhythms, the effect of the variant on sleep status remains unknown. This study aimed to investigate the effects of MTNR1B rs10830963 on fasting glucose, type 2 diabetes and sleep status in Chinese Hans. METHODS: MTNR1B rs10830963 was genotyped in a population-based cohort including 3,210 unrelated Chinese Hans from Beijing and Shanghai, and tested for associations with risk of type 2 diabetes, diabetes-related traits and sleep status. RESULTS: We confirmed the associations of MTNR1B rs10830963 with fasting glucose (beta = 0.11 mmol/l, 95%CI [0.03, 0.18], P = 0.005), glycated hemoglobin (HbA1c) (beta = 0.07%, 95%CI [0.02,0.12], P = 0.004) and homeostasis model assessment of beta-cell function (HOMA-B) (beta = -5.01%, 95%CI [-8.24,-1.77], P = 0.003) in the Shanghai, but not in the Beijing subpopulation (P >or= 0.58). The effect size of MTNR1B rs10830963 on fasting glucose in Shanghai Chinese Hans was comparable to that reported from other Asian populations. We found no evidence of associations with type 2 diabetes (OR 1.05 [0.90-1.23], P = 0.54), homeostasis model assessment of insulin sensitivity (HOMA-S) (P = 0.86) or sleep status (P >or= 0.44). CONCLUSIONS: A common variant in MTNR1B was associated with fasting glucose, HbA1C and HOMA-B but not with sleep status in Chinese Hans from Shanghai, strengthening the role of MTNR1B rs10830963 in fasting glycemia and impaired beta-cell function.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Genetic Predisposition to High Blood Pressure Associates With Cardiovascular Complications Among Patients With Type 2 Diabetes: Two Independent Studies
Hypertension and type 2 diabetes (T2D) commonly coexist, and both conditions are major risk factors for cardiovascular disease (CVD). We aimed to examine the association between genetic predisposition to high blood pressure and risk of CVD in individuals with T2D. The current study included 1,005 men and 1,299 women with T2D from the Health Professionals Follow-up Study and Nurses’ Health Study, of whom 732 developed CVD. A genetic predisposition score was calculated on the basis of 29 established blood pressure–associated variants. The genetic predisposition score showed consistent associations with risk of CVD in men and women. In the combined results, each additional blood pressure–increasing allele was associated with a 6% increased risk of CVD (odds ratio [OR] 1.06 [95% CI 1.03–1.10]). The OR was 1.62 (1.22–2.14) for risk of CVD comparing the extreme quartiles of the genetic predisposition score. The genetic association for CVD risk was significantly stronger in patients with T2D than that estimated in the general populations by a meta-analysis (OR per SD of genetic score 1.22 [95% CI 1.10–1.35] vs. 1.10 [1.08–1.12]; I2 = 71%). Our data indicate that genetic predisposition to high blood pressure is associated with an increased risk of CVD in individuals with T2D
Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice
<p>Abstract</p> <p>Background</p> <p>Calorie restriction (CR) and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance.</p> <p>Methods</p> <p>Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat), low-fat diet with 30% calorie restriction (LR), high-fat diet (HC, 60% fat), high-fat diet with 30% calorie restriction (HR), high-fat diet with voluntary running exercise (HE), and high-fat diet with a combination of 30% calorie restriction and exercise (HRE). The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression.</p> <p>Results</p> <p>Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal.</p> <p>Conclusions</p> <p>CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.</p
Recommended from our members
Vitamin D metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 year weight-loss trial: POUNDS Lost
AIMS/HYPOTHESIS:
Vitamin D and related genetic variants are associated with obesity and insulin resistance. We aimed to examine whether vitamin D metabolism-related variants affect changes in body weight and insulin resistance in response to weight-loss diets varying in macronutrient content.
METHODS:
Three vitamin D metabolism-related variants, DHCR7 rs12785878, CYP2R1 rs10741657 and GC rs2282679, were genotyped in 732 overweight/obese participants from a 2 year weight-loss trial (POUNDS Lost). We assessed genotype effects on changes in body weight, fasting levels of glucose and insulin, and HOMA-IR at 6 months (up to 656 participants) and 2 years (up to 596 participants) in response to low-protein vs high-protein diets, and low-fat vs high-fat diets.
RESULTS:
We found significant interactions between DHCR7 rs12785878 and diets varying in protein, but not in fat, on changes in insulin and HOMA-IR at both 6 months (p for interaction <0.001) and 2 years (p for interaction ≤ 0.03). The T allele (vitamin-D-increasing allele) of DHCR7 rs12785878 was associated with greater decreases in insulin and HOMA-IR (p < 0.002) in response to high-protein diets, while there was no significant genotype effect on changes in these traits in the low-protein diet group. Generalised estimating equation analyses indicated significant genotype effects on trajectory of changes in insulin resistance over the 2 year intervention in response to high-protein diets (p < 0.001). We did not observe significant interaction between the other two variants and dietary protein or fat on changes in these traits.
CONCLUSIONS/INTERPRETATION:
Our data suggest that individuals carrying the T allele of DHCR7 rs12785878 might benefit more in improvement of insulin resistance than noncarriers by consuming high-protein weight-loss diets
- …