71 research outputs found

    Risk assessment of malaria in land border regions of China in the context of malaria elimination

    No full text
    BACKGROUND:Cross-border malaria transmission poses a challenge for countries to achieve and maintain malaria elimination. Because of a dramatic increase of cross-border population movement between China and 14 neighbouring countries, the malaria epidemic risk in China's land border regions needs to be understood.METHODS: In this study, individual case-based epidemiological data on malaria in the 136 counties of China with international land borders, from 2011 to 2014, were extracted from the National Infectious Disease Information System. The Plasmodium species, seasonality, spatiotemporal distribution and changing features of imported and indigenous cases were analysed using descriptive spatial and temporal methods.RESULTS:A total of 1948 malaria cases were reported, with 1406 (72.2%) imported cases and 542 (27.8%) indigenous cases. Plasmodium vivax is the predominant species, with 1536 malaria cases occurrence (78.9%), following by Plasmodium falciparum (361 cases, 18.5%), and the others (51 cases, 2.6%). The magnitude and geographic distribution of malaria in land border counties shrunk sharply during the elimination period. Imported malaria cases were with a peak of 546 cases in 2011, decreasing yearly in the following years. The number of counties with imported cases decreased from 28 counties in 2011 to 26 counties in 2014. Indigenous malaria cases presented a markedly decreasing trend, with 319 indigenous cases in 2011 reducing to only 33 indigenous cases in 2014. The number of counties with indigenous cases reduced from 26 counties in 2011 to 10 counties in 2014. However, several bordering counties of Yunnan province adjacent to Myanmar reported indigenous malaria cases in the four consecutive years from 2011 to 2014.CONCLUSIONS:The scale and extent of malaria occurrence in the international land border counties of China decreased dramatically during the elimination period. However, several high-risk counties, especially along the China-Myanmar border, still face a persistent risk of malaria introduction and transmission. The study emphasizes the importance and urgency of cross-border cooperation between neighbouring countries to jointly face malaria threats to elimination goals

    Lysosomal Proteases Are a Determinant of Coronavirus Tropism

    Get PDF
    Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses

    Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection

    Get PDF
    The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARSCoV- 2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the twomonth study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics
    corecore