55 research outputs found

    A qualitative examination of cybercriminal governance in China

    Get PDF
    Profit-driven cybercrime has evolved into a sophisticated industry, inflicting millions of dollars in losses on the world economy. However, limited research has been conducted on the extra-legal governance of this industry, particularly in China, one of the world's most prominent cybercrime hotspots. This study, based on comprehensive fieldwork in China from 2020 to 2022 and an analysis of both primary and secondary data, seeks to address this gap. It endeavours to answer the question: How is the cybercrime industry governed in China? In line with previous research on extra-legal governance, this study finds that Chinese cybercriminals have developed a series of private governance systems, encompassing both self-governance and third-party governance, to facilitate their business interactions. In addition, this study offered three main new findings that can be added to our understanding of extra-legal governance. Firstly, self-governance is notably effective in online marketplaces due to the swift transmission of information, thus diminishing the necessity for third-party governance in the cybercrime market and the use of violence. Secondly, cybercriminal firms tend to be less predatory than traditional criminal firms, likely attributed to the reduced need for territorial resources. Lastly, cybercriminals can relocate to countries where protectors are present and continue their illicit activities remotely, with protection being more likely offered when the inflicted harm does not impact the protector's own country’s residents, and the political and economic gains outweigh the costs. This availability of protection could potentially elucidate the ongoing global dispersion of cybercriminals

    Morphology, photosynthetic physiology and biochemistry of nine herbaceous plants under water stress

    Get PDF
    Global climate warming and shifts in rainfall patterns are expected to trigger increases in the frequency and magnitude of drought and/or waterlogging stress in plants. To cope with water stress, plants develop diverse tactics. However, the adoption capability and mechanism vary depending upon the plant species identity as well as stress duration and intensity. The objectives of this study were to evaluate the species-dependent responses of alpine herbaceous species to water stress. Nine herbaceous species were subjected to different water stresses (including moderate drought and moderate waterlogging) in pot culture using a randomized complete block design with three replications for each treatment. We hypothesized that water stress would negatively impact plant growth and metabolism. We found considerable interspecies differences in morphological, physiological, and biochemical responses when plants were exposed to the same water regime. In addition, we observed pronounced interactive effects of water regime and plant species identity on plant height, root length, root/shoot ratio, biomass, and contents of chlorophyll a, chlorophyll b, chlorophyll (a+b), carotenoids, malondialdehyde, soluble sugar, betaine, soluble protein and proline, implying that plants respond to water regime differently. Our findings may cast new light on the ecological restoration of grasslands and wetlands in the Qinghai-Tibetan Plateau by helping to select stress-tolerant plant species

    Exosomes in pathogenesis, diagnosis, and therapy of ischemic stroke

    Get PDF
    Ischemic stroke is one of the major contributors to death and disability worldwide. Thus, there is an urgent need to develop early brain tissue perfusion therapies following acute stroke and to enhance functional recovery in stroke survivors. The morbidity, therapy, and recovery processes are highly orchestrated interactions involving the brain with other tissues. Exosomes are natural and ideal mediators of intercellular information transfer and recognized as biomarkers for disease diagnosis and prognosis. Changes in exosome contents express throughout the physiological process. Accumulating evidence demonstrates the use of exosomes in exploring unknown cellular and molecular mechanisms of intercellular communication and organ homeostasis and indicates their potential role in ischemic stroke. Inspired by the unique properties of exosomes, this review focuses on the communication, diagnosis, and therapeutic role of various derived exosomes, and their development and challenges for the treatment of cerebral ischemic stroke

    Beyond Codebook-Based Analog Beamforming at mmWave: Compressed Sensing and Machine Learning Methods

    Full text link
    Analog beamforming is the predominant approach for millimeter wave (mmWave) communication given its favorable characteristics for limited-resource devices. In this work, we aim at reducing the spectral efficiency gap between analog and digital beamforming methods. We propose a method for refined beam selection based on the estimated raw channel. The channel estimation, an underdetermined problem, is solved using compressed sensing (CS) methods leveraging angular domain sparsity of the channel. To reduce the complexity of CS methods, we propose dictionary learning iterative soft-thresholding algorithm, which jointly learns the sparsifying dictionary and signal reconstruction. We evaluate the proposed method on a realistic mmWave setup and show considerable performance improvement with respect to code-book based analog beamforming approaches

    Phosphorus Regulates the Level of Signaling Molecules in Rice to Reduce Cadmium Toxicity

    No full text
    Phosphorus treatment can reduce Cd accumulation and Cd toxicity in rice, but alterations in the internal regulatory network of rice during this process have rarely been reported. We have removed the effect of cadmium phosphate precipitation from the hydroponic system, treated a pair of different Cd-response rice varieties with different levels of phosphorus and cadmium and examined the changes in physiological indicators and regulatory networks. The results demonstrated that phosphorus treatment significantly reduced Cd accumulation in both types of rice, although the antioxidant systems within the two types of rice produced opposite responses. Overall, 3 mM phosphorus treatment to Cd-N decreased the expression of OsIAA17 and OsACO1 by 32% and 37%, respectively, while increasing the expression of OsNR2 by 83%; these three genes regulate the synthesis of auxin, ethylene, and nitric oxide in rice. IAA and NO levels in rice shoots increased by 24% and 96%, respectively, and these changes contribute to Cd detoxification. The cadmium transporter genes OsHMA2, OsIRT1, and OsABCC1 were significantly down-regulated in Cd-N roots after triple phosphorus treatment. These data suggest that phosphorus treatment can reduce Cd accumulation and enhance Cd resistance in rice by affecting the expression of signaling molecules

    Effect of Sodium Selenite Concentration and Culture Time on Extracellular and Intracellular Metabolite Profiles of Epichloë sp. Isolated from Festuca sinensis in Liquid Culture

    No full text
    Selenium (Se) is not only an essential trace element critical for the proper functioning of an organism, but it is also an abiotic stressor that affects an organism’s growth and metabolite profile. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing concentrations of Na2SeO3 (0, 0.1, and 0.2 mmol/L) in a liquid media for eight weeks. The mycelia and fermentation broth of Epichloë sp. were collected from four to eight weeks of cultivation. The mycelial biomass decreased in response to increased Se concentrations, and biomass accumulation peaked at week five. Using gas chromatography-mass spectrometry (GC-MS), approximately 157 and 197 metabolites were determined in the fermentation broth and mycelia, respectively. Diverse changes in extracellular and intracellular metabolites were observed in Epichloë sp. throughout the cultivation period in Se conditions. Some metabolites accumulated in the fermentation broth, while others decreased after different times of Se exposure compared to the control media. However, some metabolites were present at lower concentrations in the mycelia when cultivated with Se. The changes in metabolites under Se conditions were dynamic over the experimental period and were involved in amino acids, carbohydrates, organic acids, fatty acids, and nucleotides. Based on these results, we conclude that selenite concentrations and culture time influence the growth, extracellular and intracellular metabolite profiles of Epichloë sp. from F. sinensis

    Proline Metabolism in Response to Climate Extremes in Hairgrass

    No full text
    Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry–wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways

    Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017–2022)

    No full text
    Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs—microRNAs, long noncoding RNAs, and circular RNAs—involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment

    Insight into extracellular vesicles in vascular diseases: intercellular communication role and clinical application potential

    No full text
    Abstract Background Cells have been increasingly known to release extracellular vesicles (EVs) to the extracellular environment under physiological and pathological conditions. A plethora of studies have revealed that EVs contain cell-derived biomolecules and are found in circulation, thereby implicating them in molecular trafficking between cells. Furthermore, EVs have an effect on physiological function and disease development and serve as disease biomarkers. Main body Given the close association  between EV circulation and vascular disease, this review aims to provide a brief introduction to EVs, with a specific focus on the EV cargoes participating in pathological mechanisms, diagnosis, engineering, and clinical potential, to highlight the emerging evidence suggesting promising targets in vascular diseases. Despite the expansion of research in this field, some noticeable limitations remain for clinical translational research. Conclusion This review makes a novel contribution to a summary of recent advances and a perspective on the future of EVs in vascular diseases. Video Abstrac

    Cell ultrastructure and physiological changes of potato during cold acclimation

    No full text
    Potato cultivars are sensitive to frost; thus, freezing damage often results in heavy loss of potato yield. In this study, a wild potato species S. acaule W3, which is frost-resistant and has cold acclimation ability, and S. cardiophyllum Cph12, which is frost-sensitive and cannot be cold-acclimated, were used to research the cell structure and physiological changes that occur during cold acclimation. The results showed that frost resistance of W3 was enhanced by cold acclimation, but frost resistance of CPh12 did not change. The subcellular characters related to the enhancement of freeze resistance mainly include a decrease in the proportion of the vacuole to total cell volume, integrity of the biomembrane, and orderly arrangement of grana lamellae. At the physiological level, the W3 damage index was correlated with membrane lipid peroxidation system indices (including chlorophyll, malondialdehyde and the difference between relative conductivity before and after freezing treatment in W3), the activity of the antioxidant enzymes superoxide dismutase and catalase, the contents of the osmotic regulators proline and soluble protein, and the contents of the endogenous hormones salicylic acid (SA), indole acetic acid/abscisic acid (IAA/ABA), and SA/ABA, which indicated that cold acclimation enhanced the freezing resistance of wild potato species W3 by enhancing the original cold-tolerance characters. The results could be useful to clarify the cold resistance mechanism of plants, and to provide a theoretical basis for cold resistance breeding.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    • …
    corecore