32 research outputs found

    Numerical Research on Global Ice Loads of Maneuvering Captive Motion in Level Ice

    No full text
    In level ice, the maneuvering motion of icebreakers has a major influence on the global ice loads of the hull. This study researched the influences of the drift angle and turning radius on the ice loads of the icebreaker Xue Long through a partial numerical method based on the linear superposition theory of ice loads. First, with reference to the Araon model tests performed by the Korea Research Institute of Ships and Ocean Engineering (KRISO), numerical simulations of Araon’s direct motion were carried out at different speeds, and the average deviation between numerical results and model test results was about 13.8%. Meanwhile, the icebreaking process and modes were analyzed and discussed, compared with a model test and a full-scale ship trial. Next, the maneuvering captive motions of oblique and constant radius were simulated to study the characteristics of ice loads under different drift angles and turning radii. Compared with the maneuvering motion model tests in the ice tank of Tianjin University and the Institute for Ocean Technology of the National Research Council of Canada (NRC/IOT), the numerical results had good agreement with the model test results in terms of the variation trend of ice loads and ice–hull interaction, and the influences of drift angle and turning radius on ice resistance and transverse force, which have a certain reference value for sailing performance research and the design of the hull form of icebreaker ships, are discussed

    Variation in concentrations of major bioactive compounds in Prunella vulgaris L. related to plant parts and phenological stages

    No full text
    Prunella vulgaris L. (Labiatae) contains a variety of structurally diverse natural products, primarily rosmarinic acid (RA), ursolic acid (UA) and oleanolic acid (OA), which possess a wide array of biological properties. In the present study, P. vulgaris was harvested at three developmental stages (vegetative, full-flowering and mature-fruiting stages), dissected into stem and leaf tissues and assayed for chemical contents using high performance liquid chromatography. Significant changes in the concentrations of the major secondary metabolites (RA, UA and OA) were observed at the different development stages. The highest concentrations of RA, UA and OA were found at the full-flowering stage (15.83 mg/g dry weight (DW) RA, 1.77 mg/g DW UA and 0.65 mg/g DW OA). Among the different aerial parts of the plant, the concentrations of RA, UA and OA were higher in the leaves than in the stems at the different developmental stages. These results suggest that the full-flowering stage is characterized by the highest concentrations of bioactive compounds. Therefore, this stage may be the optimum point for harvesting P. vulgaris plants. In additional, the leaves of P. vulgaris demonstrated higher RA, UA and OA concentrations than the stems, suggesting higher utilization potential

    Numerical Research on Global Ice Loads of Maneuvering Captive Motion in Level Ice

    No full text
    In level ice, the maneuvering motion of icebreakers has a major influence on the global ice loads of the hull. This study researched the influences of the drift angle and turning radius on the ice loads of the icebreaker Xue Long through a partial numerical method based on the linear superposition theory of ice loads. First, with reference to the Araon model tests performed by the Korea Research Institute of Ships and Ocean Engineering (KRISO), numerical simulations of Araon’s direct motion were carried out at different speeds, and the average deviation between numerical results and model test results was about 13.8%. Meanwhile, the icebreaking process and modes were analyzed and discussed, compared with a model test and a full-scale ship trial. Next, the maneuvering captive motions of oblique and constant radius were simulated to study the characteristics of ice loads under different drift angles and turning radii. Compared with the maneuvering motion model tests in the ice tank of Tianjin University and the Institute for Ocean Technology of the National Research Council of Canada (NRC/IOT), the numerical results had good agreement with the model test results in terms of the variation trend of ice loads and ice–hull interaction, and the influences of drift angle and turning radius on ice resistance and transverse force, which have a certain reference value for sailing performance research and the design of the hull form of icebreaker ships, are discussed

    Optimisation of potassium chloride nutrition for proper growth, physiological development and bioactive component production in Prunella vulgaris L.

    Get PDF
    Prunella vulgaris L. is an important medicinal plant with a variety of pharmacological activities, but limited information is available about its response to potassium chloride (KCl) supplementation. P. vulgaris seedlings were cultured in media with four different KCl levels (0, 1.00, 6.00 and 40.00 mM). Characteristics relating to the growth, foliar potassium, water and chlorophyll content, photosynthesis, transpiration, nitrogen metabolism, bioactive constituent concentrations and yield were determined after three months. The appropriate KCl concentration was 6.00 mM to result in the highest values for dry weight, shoot height, spica and root weight, spica length and number in P. vulgaris. The optimum KCl concentration resulted in a maximum net photosynthetic rate (Pn) that could be associated with the highest chlorophyll content and fully open stomata conductance. A supply of surplus KCl resulted in a higher concentration of foliar potassium and negatively correlated with the biomass. Plants that were treated with the appropriate KCl level showed a greater capacity for nitrate assimilation. The Pn was significantly and positively correlated with nitrate reductase (NR) and glutamine synthetase (GS) activities and was positively correlated with leaf-soluble protein and free amino acid (FAA) contents. Both KCl starvation (0 mM) and high KCl (40.00 mM) led to water loss through a high transpiration rate and low water absorption, respectively, and resulted in increased concentrations of ursolic acid (UA), oleanolic acid (OA) and flavonoids, with the exception of rosmarinic acid (RA). Moreover, the optimum concentration of KCl significantly increased the yields of RA, UA, OA and flavonoids. Our findings suggested that significantly higher plant biomass; chlorophyll content; Pn; stronger nitrogen anabolism; lower RA, UA, OA and flavonoid accumulation; and greater RA, UA, OA and flavonoid yields in P. vulgaris could be expected in the presence of the appropriate KCl concentration (6.00 mM)

    Effects of different water management options and fertilizer supply on photosynthesis, fluorescence parameters and water use efficiency of Prunella vulgaris seedlings

    No full text
    BACKGROUND: Prunella vulgaris L. is a medical plant cultivated in sloping, sun-shaded areas in China. Recently, owing to air-environmental stress, especially drought stress strongly inhibits plant growth and development, the appropriate fertilizer supply can alleviate these effects. However, these is little information about their effects on P. vulgaris growing in arid and semi-arid areas with limited water and fertilizer supply. RESULTS: In this study, water stress decreased the photosynthetic pigment contents, inhibited photosynthetic efficiency, induced photodamage in photosystem 2 (PS2), and decreased leaf instantaneous WUE (WUEi). The decreased net photosynthetic rate (Pn) under medium drought stress compared with the control might result from stomatal limitations. However, fertilizer supply improved photosynthetic capacity by increasing the photosynthetic pigment contents and enhancing photosynthetic efficiency under water deficit. Moreover, medium fertilization also increased WUEi under the two water conditions, but fertilizer supply did little to alleviate the PS2 photodamage caused by drought stress. Hence, drought stress was the primary limitation in the photosynthetic process of P. vulgaris seedlings, while the photosynthetic characteristics of the seedlings exhibited positive responses to fertilizer supply. CONCLUSIONS: Appropriate fertilizer supply is recommended to improve photosynthetic efficiency, enhance WUEi and alleviate photodamage under drought stress

    Widely Targeted Metabolomics Analysis Reveals the Effect of Flooding Stress on the Synthesis of Flavonoids in Chrysanthemum morifolium

    No full text
    Chrysanthemum morifolium. cv “Hangju” is an important medicinal material with many functions in China. Flavonoids as the main secondary metabolites are a major class of medicinal components in “Hangju” and its composition and content can change significantly after flooding. This study mimicked the flooding stress of “Hangju” during flower bud differentiation and detected its metabolites in different growth stages. From widely targeted metabolomics data, 661 metabolites were detected, of which 46 differential metabolites exist simultaneously in the different growth stages of “Hangju”. The top three types of the 46 differential metabolites were flavone C-glycosides, flavonol and flavone. Our results demonstrated that the accumulation of flavonoids in different growth stages of “Hangju” was different; however, quercetin, eriodictyol and most of the flavone C-glycosides were significantly enhanced in the two stages after flooding stress. The expression of key enzyme genes in the flavonoid synthesis pathway were determined using RT-qPCR, which verified the consistency of the expression levels of CHI, F3H, DFR and ANS with the content of the corresponding flavonoids. A regulatory network of flavonoid biosynthesis was established to illustrate that flooding stress can change the accumulation of flavonoids by affecting the expression of the corresponding key enzymes in the flavonoid synthesis pathway

    Optogenetic Activation of the Excitatory Neurons Expressing CaMKIIα in the Ventral Tegmental Area Upregulates the Locomotor Activity of Free Behaving Rats

    No full text
    The ventral tegmental area (VTA) plays an important role in motivation and motor activity of mammals. Previous studies have reported that electrical stimulations of the VTA’s neuronal projections were able to upregulate the locomotor activity of behaving rats. However, which types of neurons in the VTA that take part in the activation remain elusive. In this paper we employed optogenetic technique to selectively activate the excitatory neurons expressing CaMKIIα in the VTA region and induced a higher locomotor activity for free behaving rats. Further behavioral studies indicated that reward learning mediated in the enhancement of the rat locomotor activity. Finally the immunohistochemistry studies explored that the excitatory neurons under the optogenetic activation in VTA were partly dopaminergic that may participate as a vital role in the optogenetic activation of the locomotor activity. In total, our study provided an optogenetic approach to selectively upregulate the locomotor activity of free behaving rats, thus facilitating both neuroscience researches and neural engineering such as animal robotics in the future
    corecore