5,914 research outputs found

    Enhanced No-Go Theorem for Quantum Position Verification

    Full text link
    Based on the instantaneous nonlocal quantum computation (INQC), Buhrman et al. proposed an excellent attack strategy to quantum position verification (QPV) protocols in 2011, and showed that, if the colluding adversaries are allowed to previously share unlimited entangled states, it is impossible to design an unconditionally secure QPV protocol in the previous model. Here, trying to overcome this no-go theorem, we find some assumptions in the INQC attack, which are implicit but essential for the success of this attack, and present three different QPV protocols where these assumptions are not satisfied. We show that for the general adversaries, who execute the attack operations at every common time slot or the time when they detect the arrival of the challenge signals from the verifiers, secure QPV is achievable. This implies practically secure QPV can be obtained even if the adversaries is allowed to share unlimited entanglement previously. Here by "practically" we mean that in a successful attack the adversaries need launch a new round of attack on the coming qubits with extremely high frequency so that none of the possible qubits, which may be sent at random time, will be missed. On the other side, using such Superdense INQC (SINQC) attack, the adversaries can still attack the proposed protocols successfully in theory. The particular attack strategies to our protocols are presented respectively. On this basis, we demonstrate the impossibility of secure QPV with looser assumptions, i.e. the enhanced no-go theorem for QPV.Comment: 19 pages, single column, 3 tables, 6 figure

    PocketCare: Tracking the Flu with Mobile Phones using Partial Observations of Proximity and Symptoms

    Full text link
    Mobile phones provide a powerful sensing platform that researchers may adopt to understand proximity interactions among people and the diffusion, through these interactions, of diseases, behaviors, and opinions. However, it remains a challenge to track the proximity-based interactions of a whole community and then model the social diffusion of diseases and behaviors starting from the observations of a small fraction of the volunteer population. In this paper, we propose a novel approach that tries to connect together these sparse observations using a model of how individuals interact with each other and how social interactions happen in terms of a sequence of proximity interactions. We apply our approach to track the spreading of flu in the spatial-proximity network of a 3000-people university campus by mobilizing 300 volunteers from this population to monitor nearby mobile phones through Bluetooth scanning and to daily report flu symptoms about and around them. Our aim is to predict the likelihood for an individual to get flu based on how often her/his daily routine intersects with those of the volunteers. Thus, we use the daily routines of the volunteers to build a model of the volunteers as well as of the non-volunteers. Our results show that we can predict flu infection two weeks ahead of time with an average precision from 0.24 to 0.35 depending on the amount of information. This precision is six to nine times higher than with a random guess model. At the population level, we can predict infectious population in a two-week window with an r-squared value of 0.95 (a random-guess model obtains an r-squared value of 0.2). These results point to an innovative approach for tracking individuals who have interacted with people showing symptoms, allowing us to warn those in danger of infection and to inform health researchers about the progression of contact-induced diseases
    • …
    corecore