32 research outputs found

    Functional linear regression: dependence and error contamination

    Get PDF
    Functional linear regression is an important topic in functional data analysis. It is commonly assumed that samples of the functional predictor are independent realizations of an underlying stochastic process, and are observed over a grid of points contaminated by iid measurement errors. In practice, however, the dynamical dependence across different curves may exist and the parametric assumption on the error covariance structure could be unrealistic. In this article, we consider functional linear regression with serially dependent observations of the functional predictor, when the contamination of the predictor by the white noise is genuinely functional with fully nonparametric covariance structure. Inspired by the fact that the autocovariance function of observed functional predictors automatically filters out the impact from the unobservable noise term, we propose a novel autocovariance-based generalized method-of-moments estimate of the slope function. We also develop a nonparametric smoothing approach to handle the scenario of partially observed functional predictors. The asymptotic properties of the resulting estimators under different scenarios are established. Finally, we demonstrate that our proposed method significantly outperforms possible competing methods through an extensive set of simulations and an analysis of a public financial dataset

    CATVI: conditional and adaptively truncated variational inference for hierarchical Bayesian nonparametric models

    Get PDF
    Current variational inference methods for hierarchical Bayesian nonparametric models can neither characterize the correlation struc- ture among latent variables due to the mean- eld setting, nor infer the true posterior dimension because of the universal trunca- tion. To overcome these limitations, we pro- pose the conditional and adaptively trun- cated variational inference method (CATVI) by maximizing the nonparametric evidence lower bound and integrating Monte Carlo into the variational inference framework. CATVI enjoys several advantages over tra- ditional methods, including a smaller diver- gence between variational and true posteri- ors, reduced risk of undertting or overt- ting, and improved prediction accuracy. Em- pirical studies on three large datasets re- veal that CATVI applied in Bayesian non- parametric topic models substantially out- performs competing models, providing lower perplexity and clearer topic-words clustering

    Finite sample theory for high-dimensional functional/scalar time series with applications

    Get PDF
    Statistical analysis of high-dimensional functional times series arises in various applications. Under this scenario, in addition to the intrinsic infinite-dimensionality of functional data, the number of functional variables can grow with the number of serially dependent observations. In this paper, we focus on the theoretical analysis of relevant estimated cross-(auto)covariance terms between two multivariate functional time series or a mixture of multivariate functional and scalar time series beyond the Gaussianity assumption. We introduce a new perspective on dependence by proposing functional cross-spectral stability measure to characterize the effect of dependence on these estimated cross terms, which are essential in the estimates for additive functional linear regressions. With the proposed functional cross-spectral stability measure, we develop useful concentration inequalities for estimated cross-(auto)covariance matrix functions to accommodate more general sub-Gaussian functional linear processes and, furthermore, establish finite sample theory for relevant estimated terms under a commonly adopted functional principal component analysis framework. Using our derived non-asymptotic results, we investigate the convergence properties of the regularized estimates for two additive functional linear regression applications under sparsity assumptions including functional linear lagged regression and partially functional linear regression in the context of high-dimensional functional/scalar time series

    Adaptive functional thresholding for sparse covariance function estimation in high dimensions

    Get PDF
    Covariance function estimation is a fundamental task in multivariate functional data analysis and arises in many applications. In this paper, we consider estimating sparse covariance functions for high-dimensional functional data, where the number of random functions p is comparable to, or even larger than the sample size n. Aided by the Hilbert–Schmidt norm of functions, we introduce a new class of functional thresholding operators that combine functional versions of thresholding and shrinkage, and propose the adaptive functional thresholding estimator by incorporating the variance effects of individual entries of the sample covariance function into functional thresholding. To handle the practical scenario where curves are partially observed with errors, we also develop a nonparametric smoothing approach to obtain the smoothed adaptive functional thresholding estimator and its binned implementation to accelerate the computation. We investigate the theoretical properties of our proposals when p grows exponentially with n under both fully and partially observed functional scenarios. Finally, we demonstrate that the proposed adaptive functional thresholding estimators significantly outperform the competitors through extensive simulations and the functional connectivity analysis of two neuroimaging datasets

    Functional graphical models

    Get PDF
    Graphical models have attracted increasing attention in recent years, especially in settings involving high dimensional data. In particular Gaussian graphical models are used to model the conditional dependence structure among multiple Gaussian random variables. As a result of its computational efficiency the graphical lasso (glasso) has become one of the most popular approaches for fitting high dimensional graphical models. In this article we extend the graphical models concept to model the conditional dependence structure among p random functions. In this setting, not only is p large, but each function is itself a high dimensional object, posing an additional level of statistical and computational complexity. We develop an extension of the glasso criterion (fglasso), which estimates the functional graphical model by imposing a block sparsity constraint on the precision matrix, via a group lasso penalty. The fglasso criterion can be optimized using an efficient block coordinate descent algorithm. We establish the concentration inequalities of the estimates, which guarantee the desirable graph sup- port recovery property, i.e. with probability tending to one, the fglasso will correctly identify the true conditional dependence structure. Finally we show that the fglasso significantly outperforms possible competing methods through both simulations and an analysis of a real world EEG data set comparing alcoholic and non-alcoholic patients

    Deep functional factor models: forecasting high-dimensional functional time series via Bayesian nonparametric factorization

    Get PDF
    This paper introduces the Deep Functional Factor Model (DF2M), a Bayesian nonparametric model designed for analysis of high-dimensional functional time series. DF2M is built upon the Indian Buffet Process and the multi-task Gaussian Process, incorporating a deep kernel function that captures non-Markovian and nonlinear temporal dynamics. Unlike many black-box deep learning models, DF2M offers an explainable approach to utilizing neural networks by constructing a factor model and integrating deep neural networks within the kernel function. Additionally, we develop a computationally efficient variational inference algorithm to infer DF2M. Empirical results from four real-world datasets demonstrate that DF2M provides better explainability and superior predictive accuracy compared to conventional deep learning models for high-dimensional functional time series
    corecore