55 research outputs found
A Dielectric Affinity Microbiosensor
We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring
Two-dimensional photonic crystal cavities in ZnSe quantum well structures
ZnSe and related materials like ZnMgSe and ZnCdSe are promising II-VI host
materials for optically mediated quantum information technology such as single
photon sources or spin qubits. Integrating these heterostructures into photonic
crystal (PC) cavities enables further improvements, for example realizing
Purcell-enhanced single photon sources with increased quantum efficiency. Here
we report on the successful implementation of two-dimensional (2D) PC cavities
in strained ZnSe quantum wells (QW) on top of a novel AlAs supporting layer.
This approach overcomes typical obstacles associated with PC membrane
fabrication in strained materials, such as cracks and strain relaxation in the
corresponding devices. We demonstrate the attainment of the required mechanical
stability in our PC devices, complete strain retainment and effective vertical
optical confinement. Structural analysis of our PC cavities reveals excellent
etching anisotropy. Additionally, elemental mapping in a scanning transmission
electron microscope confirms the transformation of AlAs into AlOx by
post-growth wet oxidation and reveals partial oxidation of ZnMgSe at the etched
sidewalls in the PC. This knowledge is utilized to tailor FDTD simulations and
to extract the ZnMgSe dispersion relation with small oxygen content. Optical
characterization of the PC cavities with cross-polarized resonance scattering
spectroscopy verifies the presence of cavity modes. The excellent agreement
between simulation and measured cavity mode energies demonstrates wide
tunability of the PC cavity and proves the pertinence of our model. This
implementation of 2D PC cavities in the ZnSe material system establishes a
solid foundation for future developments of ZnSe quantum devices
Isolation and characterization of Stenotrophomonas pavanii GXUN74707 with efficient flocculation performance and application in wastewater treatment
The identification of microorganisms with excellent flocculants-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Therefore, we isolated and identified a highly efficient flocculation performance strain of Stenotrophomonas pavanii GXUN74707 from the sludge. The optimal fermentation and flocculation conditions of strain S. pavanii GXUN74707 was in fermentation medium with glucose and urea as the carbon and nitrogen sources, respectively, at pH 7.0 for 36 h, which treatment of kaolin suspension with 0.5 mL of the fermentation broth resulted in a flocculation rate of 99.0%. The bioflocculant synthesized by strain S. pavanii GXUN74707 was found mainly in the supernatant of the fermentation broth. Chemical analysis revealed that the pure bioflocculant consisted of 79.70% carbohydrates and 14.38% proteins. The monosaccharide components of MBF-GXUN74707 are mainly mannose (5.96 μg/mg), galactose (1.86 μg/mg), and glucose (1.73 μg/mg). Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH) groups. The SEM images showed clumps of rod-shaped bacteria with adhesion of extracellular products. Furthermore, the strain decolored dye wastewater containing direct black, direct blue, and Congo red by 89.2%, 95.1%, 94.1%, respectively. The chemical oxygen demand (COD) and biological oxygen demand (BOD) removal rates after treatment of aquaculture wastewater with the fermentation broth were 68% and 23%, respectively. This study is the first to report the performance and application of strain Stenotrophomonas pavanii in wastewater flocculation. The results indicate that strain S. pavanii is a good candidate for the production novel bioflocculants and demonstrates its potential industrial practicality in biotechnology processes
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes
In this work, we fabricated three carbon nanoplume structured samples under different temperatures using a simple hot filament physical vapor deposition (HFPVD) process, and investigated the role of surface morphology, defects, and graphitic content on relative humidity (RH) sensing performances. The Van der Drift growth model and oblique angle deposition (OAD) technique of growing a large area of uniformly aligned and inclined oblique arrays of carbon nanoplumes (CNPs) on a catalyst-free silicon substrate was demonstrated. The optimal growing temperature of 800 °C was suitable for the formation of nanoplumes with larger surface area, more defect sites, and less graphitic content, compared to the other samples that were prepared. As expected, a low detection limit, high response, capability of reversible behavior, and rapid response/recovery speed with respect to RH variation, was achieved without additional surface modification or chemical functionalization. The holes’ depletion has been described as a RH sensing mechanism that leads to the increase of the conduction of the CNPs with increasing RH levels
Improved Analytical Formula for the SAR Doppler Centroid Estimation Standard Deviation for a Dynamic Sea Surface
The existing formulas for the synthetic aperture radar (SAR) Doppler centroid estimation standard deviation (STD) suffer from various limitations, especially for a dynamic sea surface. In this study, we derive an improved version of these formulas through three steps. First, by considering the ocean wavenumber spectrum information, a new strategy for determining the number of independent samples of the sea wave velocity field is adopted in the new formula. This is contrary to the method used in the existing formulas, where the number of SAR geometric resolution cells is taken as the number of samples assuming that adjacent SAR resolution cells are statistically uncorrelated. Second, the pulse repetition frequency and Doppler bandwidth are decoupled in the new formula, unlike in the existing formulas where they are unchangeably related to each other. Third, the effects of thermal noise and Doppler aliasing are jointly quantified in a mathematically exact manner instead of being treated separately, as in the existing formulas. Comprehensive SAR raw data simulations for the ocean surface show that the new formula has a better performance in predicting the Doppler centroid estimation STD than the existing formulas
Improved Analytical Formula for the SAR Doppler Centroid Estimation Standard Deviation for a Dynamic Sea Surface
The existing formulas for the synthetic aperture radar (SAR) Doppler centroid estimation standard deviation (STD) suffer from various limitations, especially for a dynamic sea surface. In this study, we derive an improved version of these formulas through three steps. First, by considering the ocean wavenumber spectrum information, a new strategy for determining the number of independent samples of the sea wave velocity field is adopted in the new formula. This is contrary to the method used in the existing formulas, where the number of SAR geometric resolution cells is taken as the number of samples assuming that adjacent SAR resolution cells are statistically uncorrelated. Second, the pulse repetition frequency and Doppler bandwidth are decoupled in the new formula, unlike in the existing formulas where they are unchangeably related to each other. Third, the effects of thermal noise and Doppler aliasing are jointly quantified in a mathematically exact manner instead of being treated separately, as in the existing formulas. Comprehensive SAR raw data simulations for the ocean surface show that the new formula has a better performance in predicting the Doppler centroid estimation STD than the existing formulas
Self-Taught Learning Based on Sparse Autoencoder for E-Nose in Wound Infection Detection
For an electronic nose (E-nose) in wound infection distinguishing, traditional learning methods have always needed large quantities of labeled wound infection samples, which are both limited and expensive; thus, we introduce self-taught learning combined with sparse autoencoder and radial basis function (RBF) into the field. Self-taught learning is a kind of transfer learning that can transfer knowledge from other fields to target fields, can solve such problems that labeled data (target fields) and unlabeled data (other fields) do not share the same class labels, even if they are from entirely different distribution. In our paper, we obtain numerous cheap unlabeled pollutant gas samples (benzene, formaldehyde, acetone and ethylalcohol); however, labeled wound infection samples are hard to gain. Thus, we pose self-taught learning to utilize these gas samples, obtaining a basis vector θ. Then, using the basis vector θ, we reconstruct the new representation of wound infection samples under sparsity constraint, which is the input of classifiers. We compare RBF with partial least squares discriminant analysis (PLSDA), and reach a conclusion that the performance of RBF is superior to others. We also change the dimension of our data set and the quantity of unlabeled data to search the input matrix that produces the highest accuracy
Chirp duration effect on high-order harmonic spectra
Chirp duration effect on high-order harmonic spectra has been theoretically studied. The results show that (i) as the chirp duration increases, both the harmonic cutoff and the harmonic intensity are enhanced. Meanwhile, at some given chirp duration, the maximum harmonic cutoff and harmonic intensity can be found (i.e., 30 fs in this paper). (ii) For the cases of the shorter and longer chirp duration, the variations of the harmonic cutoff and the harmonic intensity show a larger and smaller trend as the chirp delay changes, respectively. (iii) Furthermore, with the introduction of the two-color field scheme, the harmonic spectrum from the shorter chirp duration can produce a stronger harmonic intensity, while the changes of the harmonic cutoff and the harmonic intensity are very small for the longer chirp duration two-color pulse case. That is to say, the shorter chirp duration is beneficial to the combined field scheme, while the longer chirp duration is suitable for the single-color field scheme. (iv) Finally, three isolated attosecond pulses of 84 as, 88 as and 25 as can be generated when using the shorter and longer chirp duration cases, respectively
- …