120 research outputs found

    Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production.

    Get PDF
    Catalysts with a single atom site allow highly tuning of the activity, stability, and reactivity of heterogeneous catalysts. Therefore, atomistic understanding of the pertinent mechanism is essential to simultaneously boost the intrinsic activity, site density, electron transport, and stability. Here, we report that atomically dispersed nickel (Ni) in zincblende cadmium-zinc sulfide quantum dots (ZCS QDs) delivers an efficient and durable photocatalytic performance for water splitting under sunlight. The finely tuned Ni atoms dispersed in ZCS QDs exhibit an ultrahigh photocatalytic H2 production activity of 18.87 mmol hour-1 g-1. It could be ascribed to the favorable surface engineering to achieve highly active sites of monovalent Ni(I) and the surface heterojunctions to reinforce the carrier separation owing to the suitable energy band structures, built-in electric field, and optimized surface H2 adsorption thermodynamics. This work demonstrates a synergistic regulation of the physicochemical properties of QDs for high-efficiency photocatalytic H2 production

    Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Get PDF
    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs

    Chemical-mechanical effects in Ni-rich cathode materials

    Get PDF
    The implementation of Ni-rich cathodes with high energy density has been critically restrained by stress corrosion. Herein, crack-free LiNbO3-coated LiNi0.88Co0.10Mn0.02O2, as theoretically predicted, demonstrates highly reversible lithiation/delithiation. Mechanically, the phase transition (H1 → H2 → H3) is significantly alleviated by the excogitation of the interfacial force invoked by the LiNbO3 coating layer, as verified by X-ray absorption spectroscopy and extended X-ray absorption near-edge structure spectroscopy. Meanwhile, the stabilities of the crystal structure are remarkably strengthened by the strong Nb-O bond activated by Nb5+ doping that is confirmed by Rietveld refinement of X-ray diffraction and differential capacitance curves. Chemically, the interface shielding effect is conducive to protecting the electrode against electrolyte corrosion along with subsequent transition-metal dissolution, ultimately rendering a faster/highly convertible lithium-ion diffusion. Greatly, the excellent electrochemical properties (74% capacity retention after 300 cycles at 2 C within 2.5-4.3 V) and structural stability (the morphology remains intact after 500 cycles at 5 C within 2.5-4.3 V) are successfully achieved. Given this, this elaborate work might inaugurate a potential avenue for rationally tuning the structure/interface evolution toward Ni-rich materials

    AFM, SEM and TEM Studies on Porous Anodic Alumina

    Get PDF
    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure

    A biomaterials approach to influence stem cell fate in injectable cell-based therapies

    Get PDF
    Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation

    Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis

    Get PDF
    corecore