4 research outputs found

    Truncated Affinity Maximization: One-class Homophily Modeling for Graph Anomaly Detection

    Full text link
    One prevalent property we find empirically in real-world graph anomaly detection (GAD) datasets is a one-class homophily, i.e., normal nodes tend to have strong connection/affinity with each other, while the homophily in abnormal nodes is significantly weaker than normal nodes. However, this anomaly-discriminative property is ignored by existing GAD methods that are typically built using a conventional anomaly detection objective, such as data reconstruction. In this work, we explore this property to introduce a novel unsupervised anomaly scoring measure for GAD -- local node affinity -- that assigns a larger anomaly score to nodes that are less affiliated with their neighbors, with the affinity defined as similarity on node attributes/representations. We further propose Truncated Affinity Maximization (TAM) that learns tailored node representations for our anomaly measure by maximizing the local affinity of nodes to their neighbors. Optimizing on the original graph structure can be biased by non-homophily edges (i.e., edges connecting normal and abnormal nodes). Thus, TAM is instead optimized on truncated graphs where non-homophily edges are removed iteratively to mitigate this bias. The learned representations result in significantly stronger local affinity for normal nodes than abnormal nodes. Extensive empirical results on six real-world GAD datasets show that TAM substantially outperforms seven competing models, achieving over 10% increase in AUROC/AUPRC compared to the best contenders on challenging datasets. Our code will be made available at https: //github.com/mala-lab/TAM-master/.Comment: 19 pages, 9 figure

    Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.

    No full text
    OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI
    corecore