8,710 research outputs found
A model for an aquatic ecosystem
An ecosystem made of nutrients, plants, detritus and dissolved oxygen is
presented. Its equilibria are established. Sufficient conditions for the
existence of the coexistence equilibrium are derived and its feasibility is
discussed in every detail
Magnetic fields of our Galaxy on large and small scales
Magnetic fields have been observed on all scales in our Galaxy, from AU to
kpc. With pulsar dispersion measures and rotation measures, we can directly
measure the magnetic fields in a very large region of the Galactic disk. The
results show that the large-scale magnetic fields are aligned with the spiral
arms but reverse their directions many times from the inner-most arm (Norma) to
the outer arm (Perseus). The Zeeman splitting measurements of masers in HII
regions or star-formation regions not only show the structured fields inside
clouds, but also have a clear pattern in the global Galactic distribution of
all measured clouds which indicates the possible connection of the large-scale
and small-scale magnetic fields.Comment: 9 pages. Invited Talk at IAU Symp.242, 'Astrophysical Masers and
their Environments', Proceedings edited by J. M. Chapman & W. A. Baa
Magnetic structure of our Galaxy: A review of observations
The magnetic structure in the Galactic disk, the Galactic center and the
Galactic halo can be delineated more clearly than ever before. In the Galactic
disk, the magnetic structure has been revealed by starlight polarization within
2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting
of OH masers in two or three nearby spiral arms, and by pulsar dispersion
measures and rotation measures in nearly half of the disk. The polarized
thermal dust emission of clouds at infrared, mm and submm wavelengths and the
diffuse synchrotron emission are also related to the large-scale magnetic field
in the disk. The rotation measures of extragalactic radio sources at low
Galactic latitudes can be modeled by electron distributions and large-scale
magnetic fields. The statistical properties of the magnetized interstellar
medium at various scales have been studied using rotation measure data and
polarization data. In the Galactic center, the non-thermal filaments indicate
poloidal fields. There is no consensus on the field strength, maybe mG, maybe
tens of uG. The polarized dust emission and much enhanced rotation measures of
background radio sources are probably related to toroidal fields. In the
Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields
with reversed directions above and below the Galactic plane. Magnetic fields
from all parts of our Galaxy are connected to form a global field structure.
More observations are needed to explore the untouched regions and delineate how
fields in different parts are connected.Comment: 10+1 pages. Invited Review for IAU Symp.259: Cosmic Magnetic Fields:
From Planets, to Stars and Galaxies (Tenerife, Spain. Nov.3-7, 2009). K.G.
Strassmeier, A.G. Kosovichev & J.E. Beckman (eds.
Searching for sub-millisecond pulsars from highly polarized radio sources
Pulsars are among the most highly polarized sources in the universe. The NVSS
has catalogued 2 million radio sources with linear polarization measurements,
from which we have selected 253 sources, with polarization percentage greater
than 25%, as targets for pulsar searches. We believe that such a sample is not
biased by selection effects against ultra-short spin or orbit periods. Using
the Parkes 64m telescope, we conducted searches with sample intervals of 0.05
ms and 0.08 ms, sensitive to submillisecond pulsars. Unfortunately we did not
find any new pulsars.Comment: 2 pages 1 figure. To appear in "Young Neutron Stars and Their
Environments" (IAU Symposium 218, ASP Conference Proceedings), eds F. Camilo
and B. M. Gaensle
Spectrum-Efficient Triple-Layer Hybrid Optical OFDM for IM/DD-Based Optical Wireless Communications
In this paper, a triple-layer hybrid optical orthogonal frequency division multiplexing
(THO-OFDM) for intensity modulation with direct detection (IM/DD) systems with a high spectral efficiency is proposed. We combine N-point asymmetrically clipped optical orthogonal frequency division
multiplexing (ACO-OFDM), N/2-point ACO-OFDM, and N/2-point pulse amplitude modulated discrete
multitoned (PAM-DMT) in a single frame for simultaneous transmission. The time- and frequency-domain
demodulation methods are introduced by fully exploiting the special structure of the proposed THO-OFDM.
Theoretical analysis show that, the proposed THO-OFDM can reach the spectral efficiency limit of the
conventional layered ACO-OFDM (LACO-OFDM). Simulation results demonstrate that, the time-domain
receiver offers improved bit error rate (BER) performance compared with the frequency-domain with ∼40%
reduced computation complexity when using 512 subcarriers. Furthermore, we show a 3 dB improvement
in the peak-to-average power ratio (PAPR) compared with LACO-OFDM for the same three layers
- …