7 research outputs found

    Behavioral variant frontotemporal dementia associated with GRN and ErbB4 gene mutations: a case report and literature review

    No full text
    Abstract Objective To report the clinical manifestation and genetic characteristics of a patient having frontotemporal dementia (FTD) with abnormal behavior and unstable walking. Methods The clinical and imaging features of a patient who was eventually diagnosed with FTD were analyzed. The patient’s neuropsychological, PET-CT, electromyography, and genetic data were collected. Furthermore, the patient’s blood samples were examined for FTD-related genes. Results The patient was a 52-year-old man with hidden onset. The symptoms progressed gradually, presenting with abnormal behaviors, including repeated shopping, taking away other people’s things, constantly eating snacks, and frequently calling friends at night. The patient also exhibited executive dysfunction, such as the inability to cook and multiple driving problems, e.g., constantly deviates from his lane while driving. In addition, the patient showed personality changes such as irritability, indifference, and withdrawal, as well as motor symptoms, including unstable walking and frequent falls when walking. Brain magnetic resonance imaging revealed hippocampal sclerosis along with widening and deepening of the bilateral temporal lobe sulcus. Brain metabolic imaging via PET-CT demonstrated decreased metabolism in the bilateral prefrontal lobe, with the abnormal energy metabolism indicating FTD. Lastly, blood sample analysis detected mutations in the amyotrophic lateral sclerosis (ALS)-related GRN gene c.1352C > T (p.P451L) and ErbB4 gene c.256 T > C (p.Y86H). Conclusion This is the first case of heterozygous mutations in the GRN and ErbB4 genes in FTD alone. The GRN and ErbB4 genes are likely to be important in the pathogenesis of FTD, expanding the common genetic profile of ALS and FTD

    Elucidating the mechanisms of formononetin in modulating atherosclerotic plaque formation in ApoE-/- mice

    No full text
    Abstract Background Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic plaques and its underlying mechanisms remain to be elucidated. Methods An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/JAK2/STAT3 axis effect molecules. Results The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other markers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1β mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all dosages, whereas α7nAChR protein expression was enhanced. Conclusions According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influencing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression

    Neuroprotective effect of salvianolate lyophilized injection against cerebral ischemia in type 1 diabetic rats

    No full text
    Abstract Background Salvianolate lyophilized injection (SLI) has been clinically used in China for the treatment of acutely cerebral infarction. Clinical and experimental studies have shown that Diabetes mellitus (DM) not only increases the risk of ischemic stroke recurrence but also leads to poor outcomes and increases fatality rates after stroke. Our previous study has proved that SLI can reduce the infarct volume after stroke in type 1 diabetic rats. The aim of the study is to explore the mechanism of SLI on stroke outcome in type 1 diabetic (T1DM) rats. Methods Type 1 diabetes rats model (T1DM) was induced in male Wistar rats by intraperitoneal (i.p) injection of streptozotocin (60 mg/kg) and T1DM rats were subjected to intraluminal middle cerebral artery occlusion (MCAO). The T1DM + MCAO rats were randomly divided into six groups: sham-operated, model-vehicle, positive control group (Edaravone-treating, DE 6 mg/kg) and SLI-treating group (10.5 mg/kg, 21 mg/kg and 42 mg/kg). SLI and DE were administered by tail vein injection at 3 h after MCAO, then daily for 14 days. Micro-CT scans of the brain tissue revealed vessel characteristics and distribution in the ischemia zone. Glucose uptake was analyzed by PET/CT. RAGE, MMP9 and inflammatory factors (COX-2, TNF-α and ICAM-1), HQ-1, HQO-1 and Nrf-2 expression levels in the ischemic brain tissue were analyzed by Immunofluorescence staining and Western blot at 14 days after MCAO. Results In this study, we have demonstrated that SLI treatment significantly increased the number of brain microvasculature in ipsilateral and glucose uptake in cortex, hippocampus and penumbra in the T1DM + MCAO rats. SLI also significantly decreased the expression of RAGE, MMP9 and inflammatory factors expression, and increased the expression of HQ-1, HQO-1 and Nrf-2 in T1DM + MCAO rats. Conclusion The study showed that SLI could protect against cerebral ischemia injury in T1DM + MCAO rats and the mechanism is related to decrease inflammatory factors and activate of the Nrf2/HO-1 signaling pathway
    corecore