28 research outputs found
Impact of Dâ‚‚O/Hâ‚‚O solvent exchange on the emission of HgTe and CdTe quantum dots: Polaron and energy transfer effects
We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots
that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by
developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O),
however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials forinfrared light emitting diodes and photodetectors.We acknowledge financial support by the grant from the Research Grants Council of the Hong Kong S.A.R., China (project CityU 11302114). MIV acknowledges financial support from the FCT (Portugal)
Scalable high-repetition-rate sub-half-cycle terahertz pulses from spatially indirect interband transitions
Intense phase-locked terahertz (THz) pulses are the bedrock of THz lightwave electronics, where the carrier field creates a transient bias to control electrons on sub-cycle time scales. Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short, almost unipolar waveforms, at megahertz (MHz) repetition rates. Here, we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-II-aligned epitaxial semiconductor heterostructures. The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope, peak fields above 1.1 kV cm−1 and spectral components up to the mid-infrared, at a repetition rate of 4 MHz. The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times, which is unexpected from shift currents alone. Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse, also enabling ultrabroadband operation. Our unipolar emitters mark a milestone for flexibly scalable, next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients
Inhalation of Hydrogen Attenuates Progression of Chronic Heart Failure via Suppression of Oxidative Stress and P53 Related to Apoptosis Pathway in Rats
Background: Continuous damage from oxidative stress and apoptosis are the important mechanisms that facilitate chronic heart failure (CHF). Molecular hydrogen (H2) has potentiality in the aspects of anti-oxidation. The objectives of this study were to investigate the possible mechanism of H2 inhalation in delaying the progress of CHF.Methods and Results: A total of 60 Sprague-Dawley (SD) rats were randomly divided into four groups: Sham, Sham treated with H2, CHF and CHF treated with H2. Rats from CHF and CHF treated with H2 groups were injected isoprenaline subcutaneously to establish the rat CHF model. One month later, the rat with CHF was identified by the echocardiography. After inhalation of H2, cardiac function was improved vs. CHF (p < 0.05), whereas oxidative stress damage and apoptosis were significantly attenuated (p < 0.05). In this study, the mild oxidative stress was induced in primary cardiomyocytes of rats, and H2 treatments significantly reduced oxidative stress damage and apoptosis in cardiomyocytes (p < 0.05 or p < 0.01). Finally, as a pivotal transcription factor in reactive oxygen species (ROS)-apoptosis signaling pathway, the expression and phosphorylation of p53 were significantly reduced by H2 treatment in this rat model and H9c2 cells (p < 0.05 or p < 0.01).Conclusion: As a safe antioxidant, molecular hydrogen mitigates the progression of CHF via inhibiting apoptosis modulated by p53. Therefore, from the translational point of view and speculation, H2 is equipped with potential therapeutic application as a novel antioxidant in protecting CHF in the future
FABRICATION OF SEMICONDUCTOR NANOSTRUCTURED THIN FILM USING INKJET PRINTING
Self-assembly of semiconductor nanocrystals into superlattice has opened up the materials library by design. Driven by the complex interplay between nanocrystal, ligand, solvent and substrate, integration of nanostructures into solid state devices needs to overcome difficulties in preserving surface stability of nanocrystals while maintaining the long range order of the superstructure. Here we demonstrate the fabrication of lead sulfide nanocrystals thin films using inkjet printing. Uniform thin films with monolayer to bilayer thicknesses with periodic arrangement of nanocrystals were obtained. Adding a liquid subphase to initiate the self-assembly at fluid interface increased the ordering range of the superlattice. Further improvements in the printing technique such as the compatibility with low viscosity ink and surface sensitive materials would advance the fabrication of single crystal nanostructured thin film.2022-11-1
Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration
The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 10(8) A/m(2). This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications
High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies
Recently, room-temperature stationary sodium-ion batteries (SIBs) have received extensive investigations for large-scale energy storage systems (EESs) and smart grids due to the huge natural abundance and low cost of sodium. The SIBs share a similar rocking-chair sodium storage mechanism with lithium-ion batteries; thus, selecting appropriate electrodes with a low cost, satisfactory electrochemical performance, and high reliability is the key point for the development for SIBs. On the other hand, the carefully chosen elements in the electrodes also largely determine the cost of SIBs. Therefore, earth-abundant-metal-based compounds are ideal candidates for reducing the cost of electrodes. Among all the high-abundance and low-cost metal elements, cathodes containing iron and/or manganese are the most representative ones that have attracted numerous studies up till now. Herein, recent advances on both iron- and manganese-based cathodes of various types, such as polyanionic, layered oxide, MXene, and spinel, are highlighted. The structure-function property for the iron- and manganese-based compounds is summarized and analyzed in detail. With the participation of iron and manganese in sodium-based cathode materials, real applications of room-temperature SIBs in large-scale EESs will be greatly promoted and accelerated in the near future
Myricetin reduces neutrophil extracellular trap release in a rat model of rheumatoid arthritis, which is associated with a decrease in disease severity
Rheumatoid arthritis (RA) is a chronic disease characterized by joint inflammation and severe disability. However, there is a lack of safe and effective drugs for treating RA. In our previous study, we discovered that myricetin (MC) and celecoxib have a synergistic effect in the treatment of RA. We conducted in vitro and in vivo experiments to further investigate the effects and mechanisms of action of MC. Our findings demonstrated that MC treatment effectively reduced the release of neutrophil extracellular traps (NETs) and alleviated the inflammatory response in RA. Mechanistic studies showed that MC prevents the entry of PADI4 and MPO into the cell nucleus, thereby protecting DNA from decondensation. In a rat arthritis model, MC improved histological changes in ankle joints and suppressed NET-related signaling factors. In conclusion, MC protects the ankle joints against arthritis by inhibiting MPO and PADI4, thereby reducing NET release. The pharmacological mechanism of MC in RA involves the inhibition of NET release
Electromigration Phenomena in Sintered Nanoparticle Ag Systems Under High Current Density
Electromigration (EM) refers to the movement of atoms inside a conductor due to momentum exchange with the conduction electrons. In this work the EM effect in samples of porous Ag fabricated from nanoparticles of Ag in a pressure free sintering process is studied. Current densities of 2.5×104 − 1.7×105 A/cm2 were applied to the samples for periods ranging up to 500 h. In a typical EM setup with a non-porous conductor, void formation occurs at the cathode and hillock formation at the anode. In this study, voids were not directly observed, but cracks were formed after prolonged electromigration, presumably as a result of void accumulation and coalescence. When the samples were placed in 150 °C ambient no hillocks were observed, but at room temperature nanorods were formed with sizes ranging up to 20 μm in length, typically 25 nm in diameter and with aspect ratios ranging from 20 to 1000. It was found that interrupting and restarting the current resulted in growth of new nanorods rather than growth of existing ones, and that growth was limited by welding of individual nanorods when a critical number density was reached. While similar nanorods have been formed from Ag thin films using thermal stress , the location of nanorods was unusual in that while the number density was highest at the anode, significant numbers also appeared at central and cathode locations. Another unusual feature of the observed EM was that the initial porous structure became refined with coarse pores and grains transforming into a fine grained and fine pored structure with elongated and locally orientated pores and grains. Elemental composition studies provide tentative understanding of the nanorod number density, size distribution and growth mechanism. In the geometry utilized for this study, temperature gradients are known to strongly influence the divergence of the EM induced atomic flux and hence resistivity measurements and COMSOL Finite Element modelling was used to determine the temperature in the sample taking into account joule heating, convection and conduction processes.</jats:p