15 research outputs found

    Three-Dimensional Simulation of the Shrinkage Behavior of Injection-Molded Poly Lactic Acid (PLA): Effects of Temperature, Shear Rate and Part Thickness

    Get PDF
    The effects of injection temperature, shear and part thickness on the linear shrinkage of injection-molded poly (lactic acid) (PLA) were intensively analyzed using the Autodesk Moldflow software. The obtained results showed that both melt temperature and shear rate had obvious effects on the linear shrinkage of PLA, i.e., the linear shrinkage of PLA increases significantly with the increase of melt temperature and shear rate. In addition, the shrinkage of high-crystallinity PLA was remarkably larger than that of low-crystallinity PLA, and thin-walled parts was larger than thick-walled ones in shrinkage

    Orbit Decomposition Method for Rotordynamic Coefficients Identification of Annular Seals

    No full text
    The elliptical orbit whirl model is widely used to identify the frequency-dependent rotordynamic coefficients of annular seals. The existing solution technique of an elliptical orbit whirl model is the transient computational fluid dynamics (CFD) method. Its computational time is very long. For rapid computation, this paper proposes the orbit decomposition method. The elliptical whirl orbit is decomposed into the forward and backward circular whirl orbits. Under small perturbation circumstances, the fluid-induced forces of the elliptical orbit model can be obtained by the linear superposition of the fluid-induced forces arising from the two decomposed circular orbit models. Due to that the fluid-induced forces of circular orbit, the model can be calculated with the steady CFD method, and the transient computations can be replaced with steady ones when calculating the elliptical orbit whirl model. The computational time is significantly reduced. To validate the present method, its rotordynamic results are compared with those of the transient CFD method and experimental data. Comparisons show that the present method can accurately calculate the rotordynamic coefficients. Elliptical orbit parameter analysis reveals that the present method is valid when the whirl amplitude is less than 20% of seal clearance. The effect of ellipticity on rotordynamic coefficients can be ignored

    A Study on the Therapeutic Efficacy of San Zi Yang Qin Decoction for Non-Alcoholic Fatty Liver Disease and the Underlying Mechanism Based on Network Pharmacology

    No full text
    Objective. This study aims to explore the therapeutic efficacy of San Zi Yang Qin Decoction (SZ) and its potential mechanism in the treatment of non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and in vivo experiments. Methods. Effective chemicals and targets of SZ were searched in online databases, according to the drug-likeness of compounds and the binomial distribution of targets. A disease-target-chemical network was established using NAFLD-associated genes screened through GeneCards database, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, animal experiments were conducted to verify the efficacy and mechanism of SZ predicted by network pharmacology. The NAFLD mouse model was established with C57BL/6J mice fed with a high-fat diet for 22 weeks. The mice in the control group were fed with a chow diet. From the 23rd week, the NAFLD mice were treated with intragastric SZ or normal saline for 8 weeks. After the glucose tolerance was measured, the mice were sacrificed, followed by the collection of serum and liver tissues. Pathological changes in liver tissues were examined by H&E staining. Additionally, alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum fast blood glucose, and insulin levels were detected. Expression levels of TNF-α of serum and liver tissues were determined by ELISA and qRT-PCR, respectively. Western blot was used to detect the activation of AKT in liver tissues. Results. A total of 27 effective compounds and 20 targets of SZ were screened. GO analysis uncovered a significant correlation between the targets of SZ and those of NAFLD. KEGG analysis presented the signaling pathways enriched in SZ and NAFLD, including NAFLD, TNF-α, and apoptosis pathways. The area under the curve of major GO and KEGG pathways indicated the potential role of SZ in improving NAFLD. In vivo experiments demonstrated that SZ significantly alleviated hepatosteatosis and inflammatory cell infiltration in liver tissues, reduced serum transaminases, and improved insulin resistance and glucose tolerance of NAFLD mice. The protein level of phospho-AKT was upregulated by SZ. Additionally, SZ treatment obviously impaired the TNF-α level in the serum and liver tissue of NAFLD mice. Conclusions. According to the network pharmacology analysis and in vivo experiments, SZ could have therapeutic efficacy for NALFD. The mechanism mainly involves pathways relative to insulin resistance, TNF-α, and apoptosis. Our results provide a scientific basis for SZ in the clinical treatment of NAFLD

    MicroRNA-191 blocking the translocation of GLUT4 is involved in arsenite-induced hepatic insulin resistance through inhibiting the IRS1/AKT pathway

    No full text
    Environmental exposure to arsenic can cause a variety of health problems. Epidemiological and experimental studies have established a diabetogenic role for arsenic, but the mechanisms responsible for arsenic-induced impairment of insulin action are unclear. MicroRNAs (miRNAs) are involved in various metabolic disorders, particularly in the development of insulin resistance. The present study investigated whether arsenite, an active form of arsenic, induces hepatic insulin resistance and the mechanisms underlying it. After male C57BL/6J mice were exposed to arsenite (0 or 20 ppm) in drinking water for 12 months, intraperitoneal glucose tolerance tests (IPGTTs) and insulin tolerance tests (ITTs) revealed an arsenite-induced glucose metabolism disorder. Hepatic glycogen levels were lower in arsenite-exposed mice. Further, for livers of mice exposed to arsenite, miR-191 levels were higher, and protein levels of insulin receptor substrate 1 (IRS1), p-IRS1, and phospho-protein kinase B (p-AKT) were lower. Further, glucose transporter 4 (GLUT4) had lower levels on the plasma membrane. For insulin-treated L-02 cells, arsenite decreased glucose consumption and glycogen levels, increased miR-191 levels, and inhibited the IRS1/AKT pathway and the translocation of GLUT4 from the cytoplasm to the plasma membrane. For insulin-treated L-02 cells, the decreases of glucose consumption, glycogen levels, GLUT4 on the plasma membrane, and p-AKT levels induced by arsenite were reversed by SC79 (agonist of AKT) and an miR-191 inhibitor; these effects caused by miR-191 inhibitor were restored by IRS1 siRNA. In insulin-treated L-02 cells, miR-191, via IRS1, was involved in the arsenite-induced decreases of glucose consumption and glycogen levels and in inhibition of the translocation of GLUT4. Thus, miR-191 blocking the translocation of GLUT4 was involved in arsenite-induced hepatic insulin resistance through inhibiting the IRS1/AKT pathway. Our study reveals a mechanism for arsenite-induced hepatic insulin resistance, which provides clues for discovering biomarkers for the development of type 2 diabetes and for prevention and treatment of arsenic poisoning

    Melatonin Prevents NaAsO<sub>2</sub>-Induced Developmental Cardiotoxicity in Zebrafish through Regulating Oxidative Stress and Apoptosis

    No full text
    Melatonin is an indoleamine hormone secreted by the pineal gland. It has antioxidation and anti-apoptosis effects and a clear protective effect against cardiovascular diseases. Our previous studies demonstrated that embryonic exposure to sodium arsenite (NaAsO2) can lead to an abnormal cardiac development. The aim of this study was to determine whether melatonin could protect against NaAsO2-induced generation of reactive oxygen species (ROS), oxidative stress, apoptosis, and abnormal cardiac development in a zebrafish (Danio rerio) model. We found that melatonin decreased NaAsO2-induced zebrafish embryonic heart malformations and abnormal heart rates at a melatonin concentration as low as 10−9 mol/L. The NaAsO2-induced oxidative stress was counteracted by melatonin supplementation. Melatonin blunted the NaAsO2-induced overproduction of ROS, the upregulation of oxidative stress-related genes (sod2, cat, gpx, nrf2, ho-1), and the production of antioxidant enzymes (Total SOD, SOD1, SOD2, CAT). Melatonin attenuated the NaAsO2-induced oxidative damage, DNA damage, and apoptosis, based on malonaldehyde and 8-OHdG levels and apoptosis-related gene expression (caspase-3, bax, bcl-2), respectively. Melatonin also maintained the control levels of heart development-related genes (nkx2.5, sox9b) affected by NaAsO2. In conclusion, melatonin protected against NaAsO2-induced heart malformations by inhibiting the oxidative stress and apoptosis in zebrafish

    Endoplasmic reticulum stress mediates nickel chloride-induced epithelial‑mesenchymal transition and migration of human lung cancer A549 cells through Smad2/3 and p38 MAPK activation

    No full text
    Background: The endoplasmic reticulum (ER) is a cellular membrane-bound organelle whereby proteins are synthesized, folded and glycosylated. Due to intrinsic (e.g., genetic) and extrinsic (e.g., environmental stressors) perturbations, ER proteostasis can be deregulated within cells which triggers unfolded protein response (UPR) as an adaptive stress response that may impact the migration and invasion properties of cancer cells. However, the mechanisms underlying the nickel compounds on lung cancer cell migration and invasion remain uncertain. Objective: We aimed to study whether Nickel chloride (NiCl2) induces ER stress in lung cancer cells, and whether ER stress is involved in modulating epithelial-mesenchymal transition (EMT) and migration by Smads and MAPKs pathways activation following NiCl2 treatment. Methods: A549 cells were treated with NiCl2 to determine the cell viability using MTT assay. The wound healing assay was used to evaluate cell migration ability. ER ultrastructure was observed by transmission electron microscopy. Western blotting assay was performed to evaluate the protein levels of BIP, PERK, IRE-1α, XBP-1 s, and ATF6 for ER stress and UPR, E-cadherin and Vimentin for EMT, p-Smad2/3, p-ERK, p-JNK, and p-P38 for activation of Smads and MAPKs signaling pathways. Results: The expression levels of BIP, PERK, IRE-1α, XBP-1 s, and ATF6 were significantly increased following treatment with NiCl2 in time- and dose-effect relationship. The ER stress inhibitor 4-PBA downregulated the expression levels of the above five proteins, and reversed the decrease in E-cadherin protein level and the increase in vimentin protein expression and cell migration abilities caused by NiCl2. Furthermore, 4-PBA significantly reduced nickel chloride-induced Smad2/3 and p38 MAPK pathway activation, while not affected ERK and JNK MAPK pathways. Conclusion: NiCl2 triggers ER stress and UPR in A549 cells. Moreover, 4-PBA alleviates NiCl2-induced EMT and migration ability of A549 cells possibly through the Smad2/3 and p38 MAPK pathways activation, rather than ERK and JNK MAPK pathways
    corecore