29 research outputs found

    Experimental Study of Coal Sample Damage in Acidic Water Environments

    Get PDF
    We investigated the effects of acidic and circumneutral water on coal samples by uniaxial compression, acoustic emission, and a series of physical tests. In acidic water, the coal samples were damaged, and their ultrasonic velocities decreased, as minerals such as kaolinite and calcite underwent dissolution. When the pH was ≤7, the uniaxial compressive strength and elastic modulus decreased, while the duration of the residual strength stage tended to increase. The reactions were stronger at higher H+ concentrations and the number of large pores increased; there was a significant increase in the accumulated acoustic emission counts and maximum average energy near the unstable crack growth stage. The post-peak stage of the coal samples was characterized in the different acidic waters and the failure modes were identified by spectrum analysis. Acidic water damaged the weak areas of coal samples by complex physical and chemical reactions, which made direct tensile failure more likely when the coal samples were loaded

    Effect of Joint Geometrical Parameters on Hydraulic Fracture Network Propagation in Naturally Jointed Shale Reservoirs

    Get PDF
    The presence of a significant amount of discontinuous joints results in the inhomogeneous nature of the shale reservoirs. The geometrical parameters of these joints exert effects on the propagation of a hydraulic fracture network in the hydraulic fracturing process. Therefore, mechanisms of fluid injection-induced fracture initiation and propagation in jointed reservoirs should be well understood to unleash the full potential of hydraulic fracturing. In this paper, a coupled hydromechanical model based on the discrete element method is developed to explore the effect of the geometrical parameters of the joints on the breakdown pressure, the number and proportion of hydraulic fractures, and the hydraulic fracture network pattern generated in shale reservoirs. The microparameters of the matrix and joint used in the shale reservoir model are calibrated through the physical experiment. The hydraulic parameters used in the model are validated through comparing the breakdown pressure derived from numerical modeling against that calculated from the theoretical equation. Sensitivity analysis is performed on the geometrical parameters of the joints. Results demonstrate that the HFN pattern resulting from hydraulic fracturing can be roughly divided into four types, i.e., crossing mode, tip-to-tip mode, step path mode, and opening mode. As β (joint orientation with respect to horizontal principal stress in plane) increases from 0° to 15° or 30°, the hydraulic fracture network pattern changes from tip-to-tip mode to crossing mode, followed by a gradual decrease in the breakdown pressure and the number of cracks. In this case, the hydraulic fracture network pattern is controlled by both y (joint step angle) and β. When β is 45° or 60°, the crossing mode gains dominance, and the breakdown pressure and the number of cracks reach the lowest level. In this case, the HFN pattern is essentially dependent on β and d (joint spacing). As β reaches 75° or 90°, the step path mode is ubiquitous in all shale reservoirs, and the breakdown pressure and the number of the cracks both increase. In this case, β has a direct effect on the HFN pattern. In shale reservoirs with the same β, either decrease in k (joint persistency) and e (joint aperture) or increase in d leads to the increase in the breakdown pressure and the number of cracks. It is also found that changes in d and e result in the variation in the proportion of different types of hydraulic fractures. The opening mode of the hydraulic fracture network pattern is observed when e increases to 1.2 x 10−2 m

    Effect of rock brittleness on propagation of hydraulic fractures in shale reservoirs with bedding-planes

    Get PDF
    © 2020 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd. Hydraulic fracturing forms complex hydraulic fracture networks (HFNs) in shale reservoirs and significantly improves the permeability of shale reservoirs. Although rock brittleness is a major factor in determining whether a shale reservoir can be fractured, the relationship between HFNs and rock brittleness remains unclear. To investigate this relationship in a shale reservoir with bedding planes, this paper presents a series of hydraulic fracturing simulations based on a hydromechanically coupled discrete element model. In addition, we analyzed the sensitivity of the difference in rock brittleness to bedding-plane angle and density. The parameters used in the model were verified by comparing the simulated results with experimental results and a theoretical equation. The results showed that breakdown pressure and injection pressure increased with increasing rock brittleness. The tensile hydraulic fracture of a shale reservoir (THFSR) was always the most abundant type of hydraulic fracture (HF)—almost 2.5 times the sum of the other three types of HFs. The distribution of areas with higher fluid pressure deviated from the direction of the maximum principal stress when the angle between the bedding plane and maximum principal stress directions was large. Upon increasing this bedding-plane angle, the breakdown pressure and rock brittleness index first decreased and then increased. However, regardless of bedding angle, the relative proportions of the various types of HFs remained essentially constant, and the seepage area expanded in the direction of the maximum principal stress. Increased bedding-plane density resulted in a gradual increase in the total number of HFs, with significantly fewer of the THFSR type, and the large seepage areas connected with each other. This study thus provides useful information for preparing strategies for hydraulic fracturing

    Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores

    Get PDF
    Hydraulic fracturing is a key technology for the development of unconventional resources such as shale gas. Due to the existence of numerous bedding planes, shale reservoirs can be considered typical anisotropic materials. In anisotropic shale reservoirs, the complex hydraulic fracture network (HFN) formed by the interaction of hydraulic fracture (HF) and bedding plane (BP) is the key to fracturing treatment. In this paper, considering the anisotropic angle, stress state and injection rate, a series of hydraulic fracturing experiments were conducted to investigate the effect of anisotropic characteristics of shale reservoirs on HFN formation. The results showed that the breakdown pressure increased first and then decreased when the anisotropic angle changed at 0°–90°, while the circumferential displacement had the opposite trend with a small difference. When θ = 0°, fracturing efficiency of shale specimens was much higher than that under other operating conditions. When θ ≤ 15°, the bedding-plane mode is ubiquitous in all shale reservoirs. While θ ranged from 30°–45°, a comprehensive propagation pattern of bedding-plane and crossing is presented. When θ ≥ 60°, the HFN pattern changes from comprehensive mode to crossing mode. The propagation pattern obtained from physical experiments were verified by theoretical analysis. The closure proportion of the circumferential displacement was the highest when the propagation pattern was the bedding-plane mode (θ ≤ 15°), following by crossing. The closure proportion was minimum only when the bedding-plane and crossing mode were simultaneously presented in the HFN. The results can provide some basic data for the design in hydraulic fracturing of tight oil/gas reservoirs

    Evolution of Hydraulic Conductivity of Unsaturated Compacted Na-Bentonite under Confined Condition—Including the Microstructure Effects

    No full text
    Compacted bentonite is envisaged as engineering buffer/backfill material in geological disposal for high-level radioactive waste. In particular, Na-bentonite is characterised by lower hydraulic conductivity and higher swelling competence and cation exchange capacity, compared with other clays. A solid understanding of the hydraulic behaviour of compacted bentonite remains challenging because of the microstructure expansion of the pore system over the confined wetting path. This work proposed a novel theoretical method of pore system evolution of compacted bentonite based on its stacked microstructure, including the dynamic transfer from micro to macro porosity. Furthermore, the Kozeny–Carman equation was revised to evaluate the saturated hydraulic conductivity of compacted bentonite, taking into account microstructure effects on key hydraulic parameters such as porosity, specific surface area and tortuosity. The results show that the prediction of the revised Kozeny–Carman model falls within the acceptable range of experimental saturated hydraulic conductivity. A new constitutive relationship of relative hydraulic conductivity was also developed by considering both the pore network evolution and suction. The proposed constitutive relationship well reveals that unsaturated hydraulic conductivity undergoes a decrease controlled by microstructure evolution before an increase dominated by dropping gradient of suction during the wetting path, leading to a U-shaped relationship. The predictive outcomes of the new constitutive relationship show an excellent match with laboratory observation of unsaturated hydraulic conductivity for GMZ and MX80 bentonite over the entire wetting path, while the traditional approach overestimates the hydraulic conductivity without consideration of the microstructure effect

    Effect of Joint Geometrical Parameters on Hydraulic Fracture Network Propagation in Naturally Jointed Shale Reservoirs

    Get PDF
    The presence of a significant amount of discontinuous joints results in the inhomogeneous nature of the shale reservoirs. The geometrical parameters of these joints exert effects on the propagation of a hydraulic fracture network in the hydraulic fracturing process. Therefore, mechanisms of fluid injection-induced fracture initiation and propagation in jointed reservoirs should be well understood to unleash the full potential of hydraulic fracturing. In this paper, a coupled hydromechanical model based on the discrete element method is developed to explore the effect of the geometrical parameters of the joints on the breakdown pressure, the number and proportion of hydraulic fractures, and the hydraulic fracture network pattern generated in shale reservoirs. The microparameters of the matrix and joint used in the shale reservoir model are calibrated through the physical experiment. The hydraulic parameters used in the model are validated through comparing the breakdown pressure derived from numerical modeling against that calculated from the theoretical equation. Sensitivity analysis is performed on the geometrical parameters of the joints. Results demonstrate that the HFN pattern resulting from hydraulic fracturing can be roughly divided into four types, i.e., crossing mode, tip-to-tip mode, step path mode, and opening mode. As β (joint orientation with respect to horizontal principal stress in plane) increases from 0° to 15° or 30°, the hydraulic fracture network pattern changes from tip-to-tip mode to crossing mode, followed by a gradual decrease in the breakdown pressure and the number of cracks. In this case, the hydraulic fracture network pattern is controlled by both γ (joint step angle) and β. When β is 45° or 60°, the crossing mode gains dominance, and the breakdown pressure and the number of cracks reach the lowest level. In this case, the HFN pattern is essentially dependent on β and d (joint spacing). As β reaches 75° or 90°, the step path mode is ubiquitous in all shale reservoirs, and the breakdown pressure and the number of the cracks both increase. In this case, β has a direct effect on the HFN pattern. In shale reservoirs with the same β, either decrease in k (joint persistency) and e (joint aperture) or increase in d leads to the increase in the breakdown pressure and the number of cracks. It is also found that changes in d and e result in the variation in the proportion of different types of hydraulic fractures. The opening mode of the hydraulic fracture network pattern is observed when e increases to 1.2 × 10−2 m

    Study on Damage Characteristics of Water-Bearing Coal Samples under Cyclic Loading–Unloading

    No full text
    For underground water reservoirs in coal mines, the complex water-rich environment and changing overburden stress can damage coal pillar dams. In this paper, the coal samples from coal seam 22 of Shangwan coal mine were taken as research objects and the damage mechanism and characteristics of coal samples with different moisture content and wetting-drying cycles under cyclic loading were investigated. The results show that as the moisture content and wetting-drying cycles increase, the post-peak stage of the coal samples under cyclic stress becomes obvious, and the hysteresis loop changes from dense to sparse. Compared to the uniaxial compression experiment, when w = 5.28% (the critical water content), mechanical parameters such as peak strength and modulus of elasticity decrease the most. Under cyclic loading, the damage mode of both sets of coal samples was tensile damage, but the increase in wetting-drying cycles promotes the development of shear fractures. For evaluating fracture types, the RA-AF density map is more applicable to wetting-drying cycle coal samples, whereas for the coal samples with different moisture contents this should be carried out with caution. This study can provide some theoretical basis for the stability evaluation of coal pillar dams in underground water reservoirs
    corecore