2,219 research outputs found

    Context-aware Sequential Recommendation

    Full text link
    Since sequential information plays an important role in modeling user behaviors, various sequential recommendation methods have been proposed. Methods based on Markov assumption are widely-used, but independently combine several most recent components. Recently, Recurrent Neural Networks (RNN) based methods have been successfully applied in several sequential modeling tasks. However, for real-world applications, these methods have difficulty in modeling the contextual information, which has been proved to be very important for behavior modeling. In this paper, we propose a novel model, named Context-Aware Recurrent Neural Networks (CA-RNN). Instead of using the constant input matrix and transition matrix in conventional RNN models, CA-RNN employs adaptive context-specific input matrices and adaptive context-specific transition matrices. The adaptive context-specific input matrices capture external situations where user behaviors happen, such as time, location, weather and so on. And the adaptive context-specific transition matrices capture how lengths of time intervals between adjacent behaviors in historical sequences affect the transition of global sequential features. Experimental results show that the proposed CA-RNN model yields significant improvements over state-of-the-art sequential recommendation methods and context-aware recommendation methods on two public datasets, i.e., the Taobao dataset and the Movielens-1M dataset.Comment: IEEE International Conference on Data Mining (ICDM) 2016, to apea

    Text-Guided Molecule Generation with Diffusion Language Model

    Full text link
    Text-guided molecule generation is a task where molecules are generated to match specific textual descriptions. Recently, most existing SMILES-based molecule generation methods rely on an autoregressive architecture. In this work, we propose the Text-Guided Molecule Generation with Diffusion Language Model (TGM-DLM), a novel approach that leverages diffusion models to address the limitations of autoregressive methods. TGM-DLM updates token embeddings within the SMILES string collectively and iteratively, using a two-phase diffusion generation process. The first phase optimizes embeddings from random noise, guided by the text description, while the second phase corrects invalid SMILES strings to form valid molecular representations. We demonstrate that TGM-DLM outperforms MolT5-Base, an autoregressive model, without the need for additional data resources. Our findings underscore the remarkable effectiveness of TGM-DLM in generating coherent and precise molecules with specific properties, opening new avenues in drug discovery and related scientific domains. Code will be released at: https://github.com/Deno-V/tgm-dlm.Comment: Accepted by 38th Association for the Advancement of Artificial Intelligence, AAA

    Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables

    Full text link
    Fact checking aims to predict claim veracity by reasoning over multiple evidence pieces. It usually involves evidence retrieval and veracity reasoning. In this paper, we focus on the latter, reasoning over unstructured text and structured table information. Previous works have primarily relied on fine-tuning pretrained language models or training homogeneous-graph-based models. Despite their effectiveness, we argue that they fail to explore the rich semantic information underlying the evidence with different structures. To address this, we propose a novel word-level Heterogeneous-graph-based model for Fact Checking over unstructured and structured information, namely HeterFC. Our approach leverages a heterogeneous evidence graph, with words as nodes and thoughtfully designed edges representing different evidence properties. We perform information propagation via a relational graph neural network, facilitating interactions between claims and evidence. An attention-based method is utilized to integrate information, combined with a language model for generating predictions. We introduce a multitask loss function to account for potential inaccuracies in evidence retrieval. Comprehensive experiments on the large fact checking dataset FEVEROUS demonstrate the effectiveness of HeterFC. Code will be released at: https://github.com/Deno-V/HeterFC.Comment: Accepted by 38th Association for the Advancement of Artificial Intelligence, AAA

    Evolving to the Future: Unseen Event Adaptive Fake News Detection on Social Media

    Full text link
    With the rapid development of social media, the wide dissemination of fake news on social media is increasingly threatening both individuals and society. In the dynamic landscape of social media, fake news detection aims to develop a model trained on news reporting past events. The objective is to predict and identify fake news about future events, which often relate to subjects entirely different from those in the past. However, existing fake detection methods exhibit a lack of robustness and cannot generalize to unseen events. To address this, we introduce Future ADaptive Event-based Fake news Detection (FADE) framework. Specifically, we train a target predictor through an adaptive augmentation strategy and graph contrastive learning to make more robust overall predictions. Simultaneously, we independently train an event-only predictor to obtain biased predictions. Then we further mitigate event bias by obtaining the final prediction by subtracting the output of the event-only predictor from the output of the target predictor. Encouraging results from experiments designed to emulate real-world social media conditions validate the effectiveness of our method in comparison to existing state-of-the-art approaches

    TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation

    Full text link
    Session-based recommendation nowadays plays a vital role in many websites, which aims to predict users' actions based on anonymous sessions. There have emerged many studies that model a session as a sequence or a graph via investigating temporal transitions of items in a session. However, these methods compress a session into one fixed representation vector without considering the target items to be predicted. The fixed vector will restrict the representation ability of the recommender model, considering the diversity of target items and users' interests. In this paper, we propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation. In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items. The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model. Moreover, TAGNN harnesses the power of graph neural networks to capture rich item transitions in sessions. Comprehensive experiments conducted on real-world datasets demonstrate its superiority over state-of-the-art methods.Comment: 5 pages, accepted to SIGIR 2020, authors' versio

    Improving Molecular Pretraining with Complementary Featurizations

    Full text link
    Molecular pretraining, which learns molecular representations over massive unlabeled data, has become a prominent paradigm to solve a variety of tasks in computational chemistry and drug discovery. Recently, prosperous progress has been made in molecular pretraining with different molecular featurizations, including 1D SMILES strings, 2D graphs, and 3D geometries. However, the role of molecular featurizations with their corresponding neural architectures in molecular pretraining remains largely unexamined. In this paper, through two case studies -- chirality classification and aromatic ring counting -- we first demonstrate that different featurization techniques convey chemical information differently. In light of this observation, we propose a simple and effective MOlecular pretraining framework with COmplementary featurizations (MOCO). MOCO comprehensively leverages multiple featurizations that complement each other and outperforms existing state-of-the-art models that solely relies on one or two featurizations on a wide range of molecular property prediction tasks.Comment: 24 pages, work in progres
    corecore