13 research outputs found

    Multi-Output Regression Algorithm-Based Non-Dominated Sorting Genetic Algorithm II Optimization for L-Shaped Twisted Tape Insertions in Circular Heat Exchange Tubes

    No full text
    In this study, an optimization method using various multi-output regression models as model proxies within the NSGA-II framework was applied to determine the geometric parameters (P, W, D) of L-shaped twisted tape inserts for achieving the optimal overall heat transfer performance in a circular heat exchange tube. Herein, 4 multi-output regression models, namely, MOLR, MOSVR, MOGPR, and BPNN, were selected as proxy models and trained on a dataset containing 74 groups of data. The training results indicated that the MOGPR model, balancing high accuracy and low error conditions, exhibited moderate training times among the four algorithms. BPNN showed a comparatively lower comprehensive training effect, obtaining training accuracy close to that of the MOGPR algorithm but with approximately twice the training time. The worst fitting performance was gained with the MOSVR algorithm. Due to its fitting performance, the MOSVR algorithm was excluded from the subsequent NSGA-II model proxy. Through multi-objective optimization with NSGA-II, the optimal structural dimensions for three sets of L-shaped twisted tape inserts were obtained to achieve the best overall heat transfer efficiency within the tube

    Thermal analysis of a novel single-effect absorption refrigeration system using water/ionic liquid as working fluids

    No full text
    Based on the demand of improving the cooling performance of traditional absorption refrigeration system, a novel single-effect refrigeration system with assisted compressors using water/ionic liquids as working fluids was comprehensively analyzed. In present work, four kind of ionic liquids:1-butyl-3-methylimidazolium dibutylphosphate [BMIM][DBP], 1-methyl-3-methylimidazolium dimethylphosphate[MMIM][DMP], 1-ethyl-3-methylimidazolium dimethylphosphate [EMIM] [DMP], and 1-ethyl-3-methylimidazolium acetate [EMIM][AC], which was studied as working fluid in absorption system at the first time, was modeled and simulated in both systems. Thermodynamic properties of new single-effect refrigeration system were numerically analyzed by non-random two-liquid models and the mass and energy conservation equations. The effects of compression ratio(pr) and temperature on the COP and exergetic efficiency (ECOP) were graphed and discussed. The simulating results showed the potential of ionic liquids to be used as substitute for traditional working fluids. Moreover, comparison results suggested the system with auxiliary compressors was better than the traditional system for its lower heat source temperature and higher cooling performance. It was better to increase the compression ratio of the compressor located between the absorber and the evaporator than to increase the compression ratio of the compressor located between the generator and the condenser

    Numerical Analysis on Thermohydraulic Performance of the Tube Inserted with Rectangular Winglet Vortex Generators

    No full text
    The aim of this design was to improve the heat transfer performance significantly due to larger turbulent region and much vortices formed by tube inserted. In this article, the BSL k-ω model was chosen as turbulence model to simulate the thermohydraulic performance of the proposed tubes inserted with rectangular winglet vortex generators (RWVGs) when the Re was set as 5000 to 15,000. The reliability of the simulation results was obtained by comparing with the empirical formulas and experimental results. By means of numerical simulation, the influence mechanism of geometric parameters of RWVGs on thermal-hydraulic performance in tubes was analyzed. And the impact of three configurational parameters on the thermal performance was studied, namely the angle α, the height H and the number N of the RWVGs, respectively. The results revealed that the capacity of heat transfer in tubes with RWVG inserts was obviously larger than that in ordinary circular tube. In addition, it could be seen from the results that both Nu and f increased with the increase of H and N. At the same time, the case of α = 135° showed the greatest enhancement of thermal performance than the case of α = 45° and α = 90°.The PEC achieved the highest value of 1.23 when the height H of RWVG was 0.7 mm, the number N was 20, and angle α was 135°

    A Comprehensive Experimental Investigation of Additives to Enhance Pool Boiling Heat Transfer of a Non-Azeotropic Mixture

    No full text
    Adding nanoparticles or surfactants to pure working fluid is a common and effective method to improve the heat transfer performance of pool boiling. The objective of this research is to determine whether additives have the same efficient impact on heat transfer enhancement of the non-azeotropic mixture. In this paper, Ethylene Glycol/Deionized Water (EG/DW) was selected as the representing non-azeotropic mixture, and a comparative experiment was carried out between it and the pure working fluid. In addition, the effects of different concentrations of additives on the pool boiling heat transfer performance under different heat fluxes were experimentally studied, including TiO2 nanoparticles with different particle diameters, different kinds of surfactants, and mixtures of nanofluids and surfactants. The experimental results showed that the nanoparticles deteriorated the heat transfer of the EG/DW solution, while the surfactant enhanced the heat transfer of the solution when the concentration closed to a critical mass fraction (CMC). However, the improvement effect was unsteady with the increase in the heat flux density. The experimental results suggest that the mass transfer resistance of the non-azeotropic mixture is the most important factor in affecting heat transfer enhancement. Solutions with 20 nm TiO2 obtained a steady optimum heat transfer improvement by adding surfactants

    Research on the Thermal Hydraulic Performance and Entropy Generation Characteristics of Finned Tube Heat Exchanger with Streamline Tube

    No full text
    Thermal hydraulic performance of the fin-and-tube heat exchanger is presented in this paper. The purpose of this investigation was to investigate the heat transfer mechanism and flow characteristics in the finned tube heat exchanger with streamline tube. The streamline tube in this paper had the streamline cross section which was composed of a semicircle and a half diamond. Three-dimensional numerical simulation was presented and validated by the experiment and the other numerical simulation from public articles. The present simulation had good agreement with the experimental results. The difference of the j factor and f factor between the experimental results and present simulation results by k-ε-enhance model was less than 7.6%. The geometrical parameters were considered as every single variable to investigate the thermal hydraulic performance. The results showed that smaller transversal and larger tube pitch provided greater compactness and better thermal performance. Moreover, a larger angle was not only beneficial to enhance the thermal performance, but also helpful to improve the overall performance. Secondly, the effects of angle on the heat transfer performance and fluid flow characteristics were investigated as the perimeter kept constant. It was shown that the overall performance of the streamline tube was better than the circular tube. Lastly, the entropy generation including frictional entropy generation and the thermal entropy generation were analyzed. It can be concluded that by using the streamline tube, the wake region can be obviously reduced, and thermal performance can be improved

    Piston Thermal Analysis of Heavy Commercial Vehicle Diesel Engine Using Lanthanum Zirconate Thermal-Barrier Coating

    No full text
    When a commercial vehicle diesel engine works for an extended period of time at the torque spot, it can easily cause a mechanical failure due to the high temperature of the piston. In this paper, the temperature plug method was used to measure the temperature of the piston at the maximum torque spot. In order to reduce the failure caused by high temperature, the finite element analysis software Ansys was used in this paper to study the effects of different thicknesses of ceramic coatings on the piston surface of a diesel engine on the maximum temperature of the piston substrate. The bonding layer of the ceramic coating was NiCoCrAlY with a thickness of 0.1 mm, and the insulating layer was a La2Zr2O7 coating with respective thicknesses of 0.2 mm, 0.3 mm, 0.5 mm, 0.7 mm, and 0.9 mm. When the thickness of the ceramic coating was increased from 0.3 mm to 1.0 mm, the maximum temperature of the piston base decreased from 347.9 °C to 267.46 °C. This showed that the use of a thermal-barrier coating can effectively reduce the maximum temperature of the piston and greatly improve the safety of engine operation

    Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle

    No full text
    Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system’s performance from both thermodynamic and exergoeconomic perspectives. Results show that the system could achieve the thermal efficiency, exergy efficiency, and levelized cost of exergy (LCOE) of 70.67%, 39.13%, and 11.67 USD/GJ, respectively. The analysis identifies the combustion chamber of the EFGT as the component with the highest rate of exergy destruction. Further analysis on parameters indicates that improvements in thermodynamic performance are achievable with increased air compressor pressure ratio and gas turbine inlet temperature, or reduced pinch point temperature difference, while the LCOE can be minimized through adjustments in these parameters. Optimized operation conditions demonstrate a potential 5.7% reduction in LCOE at the expense of a 2.5% decrease in exergy efficiency when compared to the baseline scenario

    Effect of Grain Size on the Uniaxial Compressive Strength of Ice Forming with Different Wind Speeds in a Cold Laboratory

    No full text
    This study investigated the uniaxial compressive strength of distilled water ice prepared in a low-temperature laboratory at −30 °C at varying wind speeds of 0 m/s, 1 m/s, 2 m/s, 4 m/s, 6 m/s, and 8 m/s. The crystal structure and grain size of the ice were measured. The results indicated that, during the ice forming period, the higher the wind speed, the lower the grain size. Uniaxial compression tests were conducted parallel to the ice crystal long axis direction within a strain rate range of 10−6 s−1 to 10−2 s−1. The experimental temperature was controlled at −10 °C. Stress–strain curves were generated, elucidating the mechanical properties and failure modes of the ice. The results suggest that the uniaxial compressive strength of ice is related to the strain rate by a power–law function and shows a linear correlation with −1/2 power of grain size. The results explain the physical fact that the strength of ice is higher when the ice is formed in low-temperature and high-wind-speed environments. Additionally, this highlights how wind speed influences ice strength by controlling grain size during ice forming

    Experimental Investigation of Uniaxial Compressive Strength of Distilled Water Ice at Different Growth Temperatures

    No full text
    The existence of ice in nature will threaten the safety of navigation and water operations in cold regions. In order to improve the knowledge system of ice strength, the uniaxial compressive strength of distilled water ice grown at different temperatures is studied in this paper. Distilled water ice samples grown at −5 °C, −10 °C, −15 °C, −20 °C, −25 °C, −30 °C and −35 °C are prepared in the cryogenic laboratory. The density and grain size are measured. The uniaxial compressive strength tests are carried out at −10 °C. The stress-strain curves and the mechanical properties and failure modes of ice are obtained by loading along the vertical direction in the strain rate range of 10−6 s−1 to 10−2 s−1. It is found that the uniaxial compressive strength of ice is a power function of strain rate and a linear relationship with the −1/2 power of grain size. Combined with the relationship between strength and grain size and the relationship between grain size and temperature, it is deduced that the peak compressive strength has a logarithmic relationship with the growth temperature. In addition, it shows that the growth temperature affects the strength of ice by controlling the grain size
    corecore