50 research outputs found

    Top of the Heap: Efficient Memory Error Protection for Many Heap Objects

    Full text link
    Exploits against heap memory errors continue to be a major concern. Although many defenses have been proposed, heap data are not protected from attacks that exploit memory errors systematically. Research defenses focus on complete coverage of heap objects, often giving up on comprehensive memory safety protection and/or incurring high costs in performance overhead and memory usage. In this paper, we propose a solution for heap memory safety enforcement that aims to provide comprehensive protection from memory errors efficiently by protecting those heap objects whose accesses are provably safe from memory errors. Specifically, we present the Uriah system that statically validates spatial and type memory safety for heap objects, isolating compliant objects on a safe heap that enforces temporal type safety to prevent attacks on memory reuse. Using Uriah, 71.9% of heap allocation sites can be shown to produce objects (73% of allocations are found safe) that satisfy spatial and type safety, which are then isolated using Uriah's heap allocator from memory accesses via unsafe heap objects. Uriah only incurs 2.9% overhead and only uses 9.3% more memory on SPEC CPU2006 (C/C++) benchmarks, showing that many heap objects can be protected from all classes of memory errors efficiently

    AdLER: Adversarial Training with Label Error Rectification for One-Shot Medical Image Segmentation

    Full text link
    Accurate automatic segmentation of medical images typically requires large datasets with high-quality annotations, making it less applicable in clinical settings due to limited training data. One-shot segmentation based on learned transformations (OSSLT) has shown promise when labeled data is extremely limited, typically including unsupervised deformable registration, data augmentation with learned registration, and segmentation learned from augmented data. However, current one-shot segmentation methods are challenged by limited data diversity during augmentation, and potential label errors caused by imperfect registration. To address these issues, we propose a novel one-shot medical image segmentation method with adversarial training and label error rectification (AdLER), with the aim of improving the diversity of generated data and correcting label errors to enhance segmentation performance. Specifically, we implement a novel dual consistency constraint to ensure anatomy-aligned registration that lessens registration errors. Furthermore, we develop an adversarial training strategy to augment the atlas image, which ensures both generation diversity and segmentation robustness. We also propose to rectify potential label errors in the augmented atlas images by estimating segmentation uncertainty, which can compensate for the imperfect nature of deformable registration and improve segmentation authenticity. Experiments on the CANDI and ABIDE datasets demonstrate that the proposed AdLER outperforms previous state-of-the-art methods by 0.7% (CANDI), 3.6% (ABIDE "seen"), and 4.9% (ABIDE "unseen") in segmentation based on Dice scores, respectively. The source code will be available at https://github.com/hsiangyuzhao/AdLER

    Beyond Control: Exploring Novel File System Objects for Data-Only Attacks on Linux Systems

    Full text link
    The widespread deployment of control-flow integrity has propelled non-control data attacks into the mainstream. In the domain of OS kernel exploits, by corrupting critical non-control data, local attackers can directly gain root access or privilege escalation without hijacking the control flow. As a result, OS kernels have been restricting the availability of such non-control data. This forces attackers to continue to search for more exploitable non-control data in OS kernels. However, discovering unknown non-control data can be daunting because they are often tied heavily to semantics and lack universal patterns. We make two contributions in this paper: (1) discover critical non-control objects in the file subsystem and (2) analyze their exploitability. This work represents the first study, with minimal domain knowledge, to semi-automatically discover and evaluate exploitable non-control data within the file subsystem of the Linux kernel. Our solution utilizes a custom analysis and testing framework that statically and dynamically identifies promising candidate objects. Furthermore, we categorize these discovered objects into types that are suitable for various exploit strategies, including a novel strategy necessary to overcome the defense that isolates many of these objects. These objects have the advantage of being exploitable without requiring KASLR, thus making the exploits simpler and more reliable. We use 18 real-world CVEs to evaluate the exploitability of the file system objects using various exploit strategies. We develop 10 end-to-end exploits using a subset of CVEs against the kernel with all state-of-the-art mitigations enabled.Comment: 14 pages, in submission of the 31th ACM Conference on Computer and Communications Security (CCS), 202

    You Do (Not) Belong Here: Detecting DPI Evasion Attacks with Context Learning

    Full text link
    As Deep Packet Inspection (DPI) middleboxes become increasingly popular, a spectrum of adversarial attacks have emerged with the goal of evading such middleboxes. Many of these attacks exploit discrepancies between the middlebox network protocol implementations, and the more rigorous/complete versions implemented at end hosts. These evasion attacks largely involve subtle manipulations of packets to cause different behaviours at DPI and end hosts, to cloak malicious network traffic that is otherwise detectable. With recent automated discovery, it has become prohibitively challenging to manually curate rules for detecting these manipulations. In this work, we propose CLAP, the first fully-automated, unsupervised ML solution to accurately detect and localize DPI evasion attacks. By learning what we call the packet context, which essentially captures inter-relationships across both (1) different packets in a connection; and (2) different header fields within each packet, from benign traffic traces only, CLAP can detect and pinpoint packets that violate the benign packet contexts (which are the ones that are specially crafted for evasion purposes). Our evaluations with 73 state-of-the-art DPI evasion attacks show that CLAP achieves an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.963, an Equal Error Rate (EER) of only 0.061 in detection, and an accuracy of 94.6% in localization. These results suggest that CLAP can be a promising tool for thwarting DPI evasion attacks.Comment: 12 pages, 12 figures; accepted to ACM CoNEXT 202

    Uni-COAL: A Unified Framework for Cross-Modality Synthesis and Super-Resolution of MR Images

    Full text link
    Cross-modality synthesis (CMS), super-resolution (SR), and their combination (CMSR) have been extensively studied for magnetic resonance imaging (MRI). Their primary goals are to enhance the imaging quality by synthesizing the desired modality and reducing the slice thickness. Despite the promising synthetic results, these techniques are often tailored to specific tasks, thereby limiting their adaptability to complex clinical scenarios. Therefore, it is crucial to build a unified network that can handle various image synthesis tasks with arbitrary requirements of modality and resolution settings, so that the resources for training and deploying the models can be greatly reduced. However, none of the previous works is capable of performing CMS, SR, and CMSR using a unified network. Moreover, these MRI reconstruction methods often treat alias frequencies improperly, resulting in suboptimal detail restoration. In this paper, we propose a Unified Co-Modulated Alias-free framework (Uni-COAL) to accomplish the aforementioned tasks with a single network. The co-modulation design of the image-conditioned and stochastic attribute representations ensures the consistency between CMS and SR, while simultaneously accommodating arbitrary combinations of input/output modalities and thickness. The generator of Uni-COAL is also designed to be alias-free based on the Shannon-Nyquist signal processing framework, ensuring effective suppression of alias frequencies. Additionally, we leverage the semantic prior of Segment Anything Model (SAM) to guide Uni-COAL, ensuring a more authentic preservation of anatomical structures during synthesis. Experiments on three datasets demonstrate that Uni-COAL outperforms the alternatives in CMS, SR, and CMSR tasks for MR images, which highlights its generalizability to wide-range applications
    corecore