6,102 research outputs found

    Evidence for Two Gaps and Breakdown of the Uemura Plot in Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Single Crystals

    Full text link
    We report a detailed investigation on the lower critical field Hc1H_{c1} of the superconducting Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 (FeAs-122) single crystals. A pronounced kink is observed on the Hc1(T)H_{c1}(T) curve, which is attributed to the existence of two superconducting gaps. By fitting the data Hc1(T)H_{c1}(T) to the two-gap BCS model in full temperature region, a small gap of Δa(0)=2.0±0.3\Delta_a(0)=2.0\pm 0.3 meV and a large gap of Δb(0)=8.9±0.4\Delta_b(0)=8.9\pm 0.4 meV are obtained. The in-plane penetration depth λab(0)\lambda_{ab}(0) is estimated to be 105 nm corresponding to a rather large superfluid density, which points to the breakdown of the Uemura plot in FeAs-122 superconductors.Comment: 5 pages, 4 figure

    Variational Denoising Network: Toward Blind Noise Modeling and Removal

    Full text link
    Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.Comment: 11 pages, 4 figure
    • …
    corecore