26,079 research outputs found

    Deep Bilevel Learning

    Full text link
    We present a novel regularization approach to train neural networks that enjoys better generalization and test error than standard stochastic gradient descent. Our approach is based on the principles of cross-validation, where a validation set is used to limit the model overfitting. We formulate such principles as a bilevel optimization problem. This formulation allows us to define the optimization of a cost on the validation set subject to another optimization on the training set. The overfitting is controlled by introducing weights on each mini-batch in the training set and by choosing their values so that they minimize the error on the validation set. In practice, these weights define mini-batch learning rates in a gradient descent update equation that favor gradients with better generalization capabilities. Because of its simplicity, this approach can be integrated with other regularization methods and training schemes. We evaluate extensively our proposed algorithm on several neural network architectures and datasets, and find that it consistently improves the generalization of the model, especially when labels are noisy.Comment: ECCV 201

    Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg(P1-xAsx)

    Full text link
    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg(P1-xAsx). We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x = 0.38.Comment: 20 pages, 4 figure

    Theory of I-V Characteristics of Magnetic Josephson Junctions

    Full text link
    We analyze the electrical characteristics of a circuit consisting of a free thin-film magnetic layer and source and drain electrodes that have opposite magnetization orientations along the free magnet's two hard directions. We find that when the circuit's current exceeds a critical value there is a sudden resistance increase which can be large in relative terms if the currents to source or drain are strongly spin polarized and the free magnet is thin. This behavior can be partly understood in terms of a close analogy between the magnetic circuit and a Josephson junction

    Localization Transition in a Ballistic Quantum Wire

    Full text link
    The many-body wave-function of an interacting one-dimensional electron system is probed, focusing on the low-density, strong interaction regime. The properties of the wave-function are determined using tunneling between two long, clean, parallel quantum wires in a GaAs/AlGaAs heterostructure, allowing for gate-controlled electron density. As electron density is lowered to a critical value the many-body state abruptly changes from an extended state with a well-defined momentum to a localized state with a wide range of momentum components. The signature of the localized states appears as discrete tunneling features at resonant gate-voltages, corresponding to the depletion of single electrons and showing Coulomb-blockade behavior. Typically 5-10 such features appear, where the one-electron state has a single-lobed momentum distribution, and the few-electron states have double-lobed distributions with peaks at ±kF\pm k_F. A theoretical model suggests that for a small number of particles (N<6), the observed state is a mixture of ground and thermally excited spin states.Comment: 10 pages, 4 figures, 1 tabl

    The quest for companions to post-common envelope binaries. II. NSVS14256825 and HS0705+6700

    Get PDF
    We report new mid-eclipse times of the two close binaries NSVS14256825 and HS0705+6700, harboring an sdB primary and a low-mass main-sequence secondary. Both objects display clear variations in the measured orbital period, which can be explained by the action of a third object orbiting the binary. If this interpretation is correct, the third object in NSVS14256825 is a giant planet with a mass of roughly 12 M_Jup. For HS0705+6700, we provide evidence that strengthens the case for the suggested periodic nature of the eclipse time variation and reduces the uncertainties in the parameters of the brown dwarf implied by that model. The derived period is 8.4 yr and the mass is 31 M_Jup, if the orbit is coplanar with the binary. This research is part of the PlanetFinders project, an ongoing collaboration between professional astronomers and student groups at high schools.Comment: Accepted by Astron. and Astrophy

    What about a beta-beam facility for low energy neutrinos?

    Full text link
    A novel method to produce neutrino beams has recently been proposed : the beta-beams. This method consists in using the beta-decay of boosted radioactive nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose to exploit the beta-beam concept to produce neutrino beams of low energy. We discuss the applications of such a facility as well as its importance for different domains of physics. We focus, in particular, on neutrino-nucleus interaction studies of interest for various open issues in astrophysics, nuclear and particle physics. We suggest possible sites for a low energy beta-beam facility.Comment: 4 pages, 1 figur

    Entropy Production of Brownian Macromolecules with Inertia

    Full text link
    We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules with inertia under feedback control in isothermal ambient fluid. With the control being represented by a velocity-dependent external force, we find such open systems can have a negative entropy production rate and we develop a mesoscopic theory consistent with the second law. We propose an equilibrium condition and define a class of external forces, which includes a transverse Lorentz force, leading to equilibrium.Comment: 10 pages, 1 figur

    Neutrino-Mixing-Generated Lepton Asymmetry and the Primordial 4^4He Abundance

    Get PDF
    It has been proposed that an asymmetry in the electron neutrino sector may be generated by resonant active-sterile neutrino transformations during Big Bang Nucleosynthesis (BBN). We calculate the change in the primordial 4^4He yield YY resulting from this asymmetry, taking into account both the time evolution of the νe\nu_e and νˉe\bar\nu_e distribution function and the spectral distortions in these. We calculate this change in two schemes: (1) a lepton asymmetry directly generated by νe\nu_e mixing with a lighter right-handed sterile neutrino νs\nu_s; and (2) a lepton asymmetry generated by a ντ↔νs\nu_\tau\leftrightarrow\nu_s or νμ↔νs\nu_\mu\leftrightarrow\nu_s transformation which is subsequently partially converted to an asymmetry in the νeνˉe\nu_e\bar\nu_e sector by a matter-enhanced active-active neutrino transformation. In the first scheme, we find that the percentage change in YY is between -1% and 9% (with the sign depending on the sign of the asymmetry), bounded by the Majorana mass limit m_{\nu_e}\la 1 eV. In the second scheme, the maximal percentage reduction in YY is 2%, if the lepton number asymmetry in neutrinos is positive; Otherwise, the percentage increase in YY is \la 5% for m^2_{\nu_\mu,\nu_\tau}-m^2_{\nu_s}\la 10^4 eV. We conclude that the change in the primordial 4^4He yield induced by a neutrino-mixing-generated lepton number asymmetry can be substantial in the upward direction, but limited in the downward direction.Comment: 15 pages, 7 figures, submitted to PR

    Beam-Pattern Assisted Low-Complexity Beam Alignment for Fixed Wireless mmWave xHaul

    Get PDF
    This paper presents the design of two-stage beam alignment methods employing a hybrid analog-digital antenna array and exploiting the beam pattern in a point-to-point millimeter-wave (mmWave) radio for mmWave massive multiple-input multiple-output systems. We investigate an antenna deactivating approach that generates wider beams at the coarse alignment stage and exploit the theoretical beam pattern at the fine alignment stage. Our numerical results show that the proposed two-stage methods can achieve a better beam alignment than existing exhaustive methods and avail measurements/complexity reductions by tuning key parameters governing the alignment performance
    • …
    corecore