71,925 research outputs found
Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach
Today's large-scale enterprise networks, data center networks, and wide area
networks can be decomposed into multiple administrative or geographical
domains. Domains may be owned by different administrative units or
organizations. Hence protecting domain information is an important concern.
Existing general-purpose Secure Multi-Party Computation (SMPC) methods that
preserves privacy for domains are extremely slow for cross-domain routing
problems. In this paper we present PYCRO, a cryptographic protocol specifically
designed for privacy-preserving cross-domain routing optimization in Software
Defined Networking (SDN) environments. PYCRO provides two fundamental routing
functions, policy-compliant shortest path computing and bandwidth allocation,
while ensuring strong protection for the private information of domains. We
rigorously prove the privacy guarantee of our protocol. We have implemented a
prototype system that runs PYCRO on servers in a campus network. Experimental
results using real ISP network topologies show that PYCRO is very efficient in
computation and communication costs
Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding
Human action recognition refers to automatic recognizing human actions from a
video clip. In reality, there often exist multiple human actions in a video
stream. Such a video stream is often weakly-annotated with a set of relevant
human action labels at a global level rather than assigning each label to a
specific video episode corresponding to a single action, which leads to a
multi-label learning problem. Furthermore, there are many meaningful human
actions in reality but it would be extremely difficult to collect/annotate
video clips regarding all of various human actions, which leads to a zero-shot
learning scenario. To the best of our knowledge, there is no work that has
addressed all the above issues together in human action recognition. In this
paper, we formulate a real-world human action recognition task as a multi-label
zero-shot learning problem and propose a framework to tackle this problem in a
holistic way. Our framework holistically tackles the issue of unknown temporal
boundaries between different actions for multi-label learning and exploits the
side information regarding the semantic relationship between different human
actions for knowledge transfer. Consequently, our framework leads to a joint
latent ranking embedding for multi-label zero-shot human action recognition. A
novel neural architecture of two component models and an alternate learning
algorithm are proposed to carry out the joint latent ranking embedding
learning. Thus, multi-label zero-shot recognition is done by measuring
relatedness scores of action labels to a test video clip in the joint latent
visual and semantic embedding spaces. We evaluate our framework with different
settings, including a novel data split scheme designed especially for
evaluating multi-label zero-shot learning, on two datasets: Breakfast and
Charades. The experimental results demonstrate the effectiveness of our
framework.Comment: 27 pages, 10 figures and 7 tables. Technical report submitted to a
journal. More experimental results/references were added and typos were
correcte
Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network
Data center applications require the network to be scalable and
bandwidth-rich. Current data center network architectures often use rigid
topologies to increase network bandwidth. A major limitation is that they can
hardly support incremental network growth. Recent work proposes to use random
interconnects to provide growth flexibility. However routing on a random
topology suffers from control and data plane scalability problems, because
routing decisions require global information and forwarding state cannot be
aggregated. In this paper we design a novel flexible data center network
architecture, Space Shuffle (S2), which applies greedy routing on multiple ring
spaces to achieve high-throughput, scalability, and flexibility. The proposed
greedy routing protocol of S2 effectively exploits the path diversity of
densely connected topologies and enables key-based routing. Extensive
experimental studies show that S2 provides high bisectional bandwidth and
throughput, near-optimal routing path lengths, extremely small forwarding
state, fairness among concurrent data flows, and resiliency to network
failures
- …