97 research outputs found

    Effect of Ozone Gas Combined with Perforated Modified Atmosphere Packaging on Quality and Antioxidant Capacity of Chinese Bayberry

    Get PDF
    The aim of this study was to evaluate the combined effect of gaseous ozone (OG) and perforated modified atmosphere packaging (MAP) on the preservation of Chinese bayberry. In order to determine the optimal storage conditions, different modified atmospheres and different concentrations of OG were used separately or in combination to treat Chinese bayberry. Results showed that the optimum modified atmosphere for packaging of Chinese bayberry was 10% O2 + 10% CO2 + 80% N2, which could maintain dynamic equilibrium when a microporous film with two perforations of 100 μm in diameter per 243.39 cm2 was used, and the optimal OG concentration was 18.3 mg/m3. The single treatments with OG or perforated MAP inhibited the decay incidence and maintained high contents of total phenols, anthocyanins and flavonoids in Chinese bayberry. The combined treatment was more effective in preserving the quality of Chinese bayberry, slowing down the decline of fruit firmness, and reducing the losses of total soluble solids (TSS), titratable acid (TA) and ascorbic acid (ASA). In addition, the activities of peroxidase (POD) and superoxide dismutase (SOD) in the combined treatment group were 1.42 and 1.9 times higher than those in the untreated control, respectively, indicating reduced accumulation of H2O2 and O2-·, so that the mold free shelf life was extended up to 8 d

    Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue

    Get PDF
    ABSTRACT: BACKGROUND: Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. RESULTS: Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. CONCLUSION: The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations

    Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The JAK2<sup>V617F </sup>mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1.</p> <p>Methods</p> <p>Pharmacological inhibition of JAK2/STAT5 signaling in JAK2<sup>V617F </sup>mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins.</p> <p>Results</p> <p>Treatment of JAK2<sup>V617F </sup>mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2<sup>V617F </sup>mutant cell viability and sensitized the cells to JAK2 inhibition.</p> <p>Conclusions</p> <p>We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2<sup>V617F </sup>cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.</p

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Effects of protein intake from an energy-restricted diet on the skeletal muscle composition of overweight and obese rats

    No full text
    Abstract Excess weight and obesity are often associated with ectopic adipose tissue accumulation in skeletal muscles. Intermuscular adipose tissue (IMAT) impairs muscle quality and reduces insulin-stimulated skeletal muscle glucose uptake. Although energy restriction and high protein intake can decrease IMAT, the effects and mechanisms of protein intake from an energy-restricted diet on protein and fat masses in skeletal muscle have received little attention. After establishing a diet-induced overweight and obese Sprague-Dawley rat model (half male and half female), rats were divided into five groups: normal control (NC; normal weight, general maintenance diet), model control (MC; overweight and obesity, high-fat diet), energy-restricted low protein (LP; overweight and obesity, 60% energy intake of NC, general maintenance diet), energy-restricted normal protein (NP; overweight and obesity, 60% energy intake of NC, high-protein diet 1), and energy-restricted high protein (HP; overweight and obesity, 60% energy intake of NC, high-protein diet 2). After 8 weeks, plasma and skeletal muscle (quadriceps femoris and gastrocnemius) samples were collected. Plasma levels of glucose, triglycerides, and hormones were analyzed, while contents of protein, fat, and factors associated with their synthesis and degradation were evaluated in skeletal muscles. Plasma concentrations of hormones contrasted protein and fat contents in skeletal muscles. Fat weights and contents of quadriceps femoris and gastrocnemius muscles in the NP group were significantly lower compared with LP and HP groups (P < 0.05). Moreover, concentrations of factors associated with the degradation of muscle fat were significantly higher in the NP group compared with LP and HP groups (P < 0.05). During energy restriction, protein intake equal to that of a normal protein diet increased lipolysis of quadriceps femoris and gastrocnemius muscles in rats of both sexes

    Ultra-thin materials for electrocatalytic CO2 reduction to prepare liquid fuels

    No full text
    The electrocatalytic CO2 reduction reaction (CO2RR) can not only alleviate the negative effects caused by excessive CO2, but also produce the carbon-containing fuels to alleviate energy shortages. However, the reactive paths of CO2RR are relatively complicated, and the problems such as low selectivity, low current density and poor stability exist. It is urgent to develop efficient and inexpensive catalysts to promote its development. Ultra-thin materials have the advantages of large specific surface area, fully exposed active sites, accelerated kinetic mass transfer, and adjustable electronic structure. They are expected to break the bottleneck of CO2RR, thus receiving widespread attention. Here, the synthesis and application of ultra-thin materials in the past four years in electrocatalytic CO2RR to produce liquid fuels (formic acid, methanol, acetic acid) were briefly summarized. The advantages of ultra-thin materials over bulk materials and their influence on catalytic activity, selectivity and reaction paths were discussed. Also, some suggestions for future development trends, including the synthesis methodology of ultra-thin materials, their potential as supports, mechanism analysis and machine learning were put forward
    • …
    corecore